Étiquette : Angiogenèse

Stimulation Électrique et Modulation des Macrophages pour la Régénération Tissulaire

La recherche sur l’effet des champs électriques sur le comportement cellulaire, notamment sur les macrophages, est encore à un stade précoce par rapport à l’étude de la biologie moléculaire. Les macrophages, qui font partie du système immunitaire inné, jouent un rôle crucial dans la défense contre les agents pathogènes et la maintenance des tissus. Ils peuvent adopter divers comportements en fonction des circonstances, notamment des états M1 (pro-inflammatoires) et M2 (anti-inflammatoires et régénératifs). L’objectif de nombreuses recherches est de diriger les macrophages vers un état souhaité pour traiter des maladies, en particulier les maladies inflammatoires. La modulation de la réponse immunitaire, en particulier des macrophages, est une stratégie prometteuse pour lutter contre les maladies dégénératives et favoriser la réparation des tissus. La stimulation électrique pourrait réguler la fonction cellulaire pendant la cicatrisation des plaies et la régénération. Cependant, les études sur les effets de la stimulation électrique sur les macrophages, particulièrement les cellules humaines primaires, sont limitées. Dans cette étude, les chercheurs démontrent que la stimulation électrique a un effet immunomodulateur sur les macrophages humains primaires, favorisant un phénotype pro-régénératif anti-inflammatoire, avec une diminution de l’expression des marqueurs macrophagiques inflammatoires et une augmentation de l’expression des gènes angiogéniques. De plus, les macrophages stimulés électriquement montrent la capacité de promouvoir la formation de tubes angiogéniques dans des cellules endothéliales provenant de veines ombilicales humaines (HUVEC) ainsi que la migration des cellules souches mésenchymateuses dans un modèle de grattage de plaie. Ces résultats soutiennent l’utilisation de la stimulation électrique comme une stratégie thérapeutique viable pour moduler les macrophages dans divers microenvironnements d’injury et de défense. Source : https://www.fightaging.org/archives/2025/09/electrical-stimulation-can-induce-macrophages-into-the-pro-regenerative-m2-phenotype/

Le rôle des mitochondries dans la reprogrammation des fibroblastes associés au cancer

Les scientifiques ont découvert que les cellules cancéreuses recrutent des fibroblastes pour soutenir la croissance tumorale en leur transférant des mitochondries. Cette découverte ouvre de nouvelles pistes pour le traitement du cancer. En effet, les cellules cancéreuses ne fonctionnent pas seules ; leur succès repose souvent sur la coopération avec les cellules environnantes. Ces dernières peuvent parfois donner des mitochondries aux cellules cancéreuses, ce qui booste leur métabolisme et favorise la croissance tumorale. Dans le cas du cancer de la peau, des transferts mitochondriaux entre fibroblastes associés au cancer (CAF) et cellules cancéreuses ont été observés. Pour la première fois, une équipe de chercheurs de l’ETH Zurich a montré que le phénomène inverse se produit également : les cellules cancéreuses transfèrent des mitochondries à des CAF. Les CAF jouent un rôle clé dans le microenvironnement tumoral en construisant et maintenant le système de soutien de la tumeur. Dans leur étude publiée dans Nature Cancer, les chercheurs ont co-cultivé des cellules cancéreuses cutanées A431 avec des fibroblastes humains primaires. En marquant les mitochondries, ils ont pu confirmer que certaines d’entre elles se retrouvaient dans les fibroblastes. Le transfert mitochondrial est un phénomène répandu, se produisant également lors de la guérison des blessures, et peut se faire de plusieurs manières. Les chercheurs ont cependant pu écarter toutes les méthodes sauf une : le transfert par des nanotubes de tunneling (TNT), qui sont des ponts membranaires fins et basés sur l’actine, permettant le transport direct d’organelles et de signaux entre les cellules. Ces résultats suggèrent que les cellules cancéreuses étendent des TNT pour livrer directement leurs mitochondries aux fibroblastes. Ce transfert a également été observé avec des cellules cancéreuses du sein et du pancréas. Pourquoi les cellules cancéreuses transfèrent-elles des mitochondries précieuses à d’autres cellules ? Les chercheurs ont découvert que les fibroblastes ayant reçu des mitochondries de cellules cancéreuses présentent une augmentation de l’expression de plusieurs gènes liés aux phénotypes des CAF et à la construction de la matrice extracellulaire (MEC), ce qui stimule leur prolifération. En gros, le transfert mitochondrial des cellules cancéreuses cause une reprogrammation des fibroblastes normaux vers des CAF. Des essais ont montré une augmentation de la phosphorylation oxydative et des fuites de protons dans les fibroblastes récepteurs, indiquant que leur machinerie énergétique fonctionnait à plein régime. Le traitement avec de l’oligomycine, qui empêche la production d’énergie par les mitochondries, a bloqué à la fois l’induction des marqueurs CAF et la prolifération. Pour prouver que les mitochondries seules étaient responsables de cette transformation, les scientifiques ont isolé des mitochondries directement à partir de cellules cancéreuses et les ont transplantées dans des fibroblastes normaux, induisant les mêmes changements similaires à ceux des CAF. Il est crucial de noter que toutes les mitochondries ne sont pas égales ; celles provenant de cellules non cancéreuses avaient peu d’effet, tandis que celles de cellules cancéreuses plus malignes avaient un effet plus fort. Lorsque des mitochondries dysfonctionnelles étaient transférées, le fibroblaste ne se reprogrammait pas et ne soutenait pas la croissance tumorale chez les souris. Dans les expériences in vivo, la co-injection de cellules A431 avec des fibroblastes ayant reçu des mitochondries A431 a produit des tumeurs plus grandes et une angiogenèse accrue. Cela a soulevé la question de savoir quel facteur tumoral contrôle ce transfert. En analysant les données d’expression génique des cancers de la peau humains, l’équipe a identifié plusieurs gènes impliqués dans le transport mitochondrial, parmi lesquels un protéine, MIRO2, qui était significativement surexprimée dans les cellules cancéreuses, notamment aux bords invasifs des tumeurs où elles interagissent avec les fibroblastes. MIRO2 agit comme un moteur moléculaire, reliant les mitochondries au réseau de transport cellulaire pour contrôler leur position. Les chercheurs ont émis l’hypothèse que les cellules cancéreuses détournent MIRO2 pour déplacer leurs mitochondries en vue d’une livraison. Lorsque l’interférence par ARN a été utilisée pour réduire les niveaux de MIRO2 dans les cellules cancéreuses, les mitochondries se sont regroupées autour du noyau, réduisant la capacité des cellules à transférer des mitochondries aux fibroblastes et à les convertir en CAF. À l’inverse, augmenter les niveaux de MIRO2 dans les cellules cancéreuses a stimulé leur activité de transfert mitochondrial. En injectant des cellules cancéreuses déficientes en MIRO2 dans des souris, les cellules n’ont pas formé de tumeurs. Cependant, lorsque ces cellules déficientes en MIRO2 ont été co-injectées avec des fibroblastes chargés de mitochondries cancéreuses, cette combinaison a induit une croissance tumorale, suggérant que le rôle de MIRO2 était de provoquer la reprogrammation des fibroblastes en CAF, rôle crucial pour le développement du cancer. Les chercheurs sont optimistes quant à l’avenir de cette découverte, suggérant que le blocage de MIRO2 pourrait avoir des applications cliniques à long terme. Source : https://www.lifespan.io/news/cancer-cells-transfer-mitochondria-to-fibroblasts/?utm_source=rss&utm_medium=rss&utm_campaign=cancer-cells-transfer-mitochondria-to-fibroblasts

Reprogrammation Cellulaire : Une Voie Prometteuse pour le Traitement du Vieillissement

La reprogrammation cellulaire est une approche prometteuse pour traiter le vieillissement en induisant l’expression des facteurs de Yamanaka pendant une période limitée. L’objectif est de modifier l’état épigénétique des cellules pour qu’il devienne plus jeune, tout en préservant leur fonction et en évitant la formation de cellules souches pluripotentes potentiellement nuisibles. Des recherches antérieures ont principalement exploré les technologies de thérapie génique, mais une branche de recherche se concentre sur des petites molécules capables d’induire une expression suffisante des facteurs de Yamanaka. Parmi ces combinaisons de petites molécules, le cocktail 2c a été étudié sur des souris. Bien que les petites molécules permettent une livraison efficace dans tout le corps, des préoccupations subsistent quant aux effets secondaires de ces agents de reprogrammation connus.

La recherche sur la reprogrammation cellulaire partielle par le biais de combinaisons spécifiques de petites molécules pourrait prolonger la durée de vie chez des organismes modèles. Des cocktails chimiques comme RepSox et la tranylcypromine (TCP) pourraient induire des changements bénéfiques liés à l’âge sans les risques associés à une reprogrammation complète. Dans une étude, des souris femelles C3H ont été divisées en deux groupes d’âge : ‘vieux’ (16-20 mois) et ‘senior’ (10-13 mois). Elles ont reçu des injections intrapéritonéales de RepSox (5 mg/kg) et de TCP (3 mg/kg) ou de DMSO (comme contrôle) tous les 72 heures pendant 30 jours.

Dans le groupe ‘vieux’, les souris traitées ont montré une amélioration de l’état neurologique, de la santé du pelage et du squelette, ainsi qu’une angiogenèse corticale accrue, bien que des changements histologiques défavorables aient été observés dans le foie et le cerveau. Dans le groupe ‘senior’, les souris traitées ont affiché un plateau de mortalité après sept mois, tandis que les décès ont continué chez les témoins. Bien que la survie globale n’ait pas montré de différence significative, la durée de vie maximale a augmenté de manière significative chez les souris traitées. Les résultats histologiques ont révélé des changements adaptatifs localisés plutôt que des effets toxiques majeurs. Ces résultats suggèrent que la combinaison de RepSox et de TCP exerce des effets protecteurs sur les phénotypes liés au vieillissement et pourrait potentiellement ralentir les processus de vieillissement systémique chez les souris C3H. Source : https://www.fightaging.org/archives/2025/06/small-molecule-reprogramming-in-mice-with-repsox-and-tranylcypromine/

Impact du Vieillissement sur l’Angiogenèse et le Rôle des Macrophages Sénescents

L’incapacité à générer de nouveaux vaisseaux sanguins diminue avec l’âge, entraînant une perte de capillaires et une densité réduite des tissus. Ce phénomène complique le développement de thérapies visant à traiter des conditions comme la maladie artérielle périphérique, qui est souvent causée par un flux sanguin réduit en raison de plaques athéromateuses. Des recherches récentes montrent que les macrophages sénescents jouent un rôle clé dans la dysfonction de la croissance et de l’entretien des vaisseaux sanguins chez les personnes âgées. Les macrophages sont des cellules immunitaires qui sont cruciales pour l’angiogenèse, le processus de formation de nouveaux vaisseaux sanguins. Avec l’âge, le microenvironnement favorise la sénescence des macrophages, rendant ces cellules plus pro-inflammatoires. Une étude a révélé que les macrophages des muscles squelettiques ischémiques chez les vieux souris sont plus sénescents et inhibent la revascularisation. Ces macrophages sénescents provoquent une dysfonction endothéliale en augmentant l’expression et la sécrétion du facteur de croissance endothélial vasculaire A-165B (VEGF-A165B). Il est important de noter que le VEGF-A joue un rôle complexe dans la revascularisation, car il existe deux isoformes : l’isoforme proangiogénique VEGF-A165A et l’isoforme antiangiogénique VEGF-A165B. Les niveaux plasmatiques de VEGF-A165B sont élevés chez les patients âgés souffrant de maladie artérielle périphérique et sont associés à un indice de cheville-brachial plus bas, indiquant une gravité de la maladie. Cette étude suggère que cibler les macrophages sénescents pourrait offrir une nouvelle voie pour améliorer les dommages liés à la revascularisation chez les personnes âgées et promouvoir des essais cliniques sur les traitements sénolytiques, tels que la combinaison de dasatinib et de quercétine, pour traiter les conditions liées à l’âge. Source : https://www.fightaging.org/archives/2025/04/senescent-macrophages-inhibit-vascularization-in-aged-individuals/

Lien entre la sénescence des macrophages et l’échec de l’angiogenèse dans la maladie artérielle périphérique

Dans une étude publiée dans Aging Cell, des chercheurs ont établi un lien entre la sénescence des macrophages et l’échec de la formation de nouveaux vaisseaux sanguins, ce qui pourrait faciliter le traitement des obstructions artérielles. Les problèmes causés par des vaisseaux sanguins obstrués ne se limitent pas aux crises cardiaques et aux AVC, mais incluent également la maladie artérielle périphérique (PAD), touchant environ 113 millions de personnes dans le monde. Bien que certaines interventions chirurgicales puissent corriger ce problème, elles sont risquées chez les personnes âgées. L’idéal serait de permettre au corps de restaurer lui-même ces vaisseaux sanguins, mais cette approche a rencontré peu de succès en raison des processus liés au vieillissement. Des recherches antérieures ont montré que les macrophages, qui encouragent normalement la formation de nouveaux vaisseaux sanguins (angiogenèse), deviennent sénescents avec l’âge, entraînant divers troubles. La PAD est caractérisée par des changements dans le facteur de croissance endothélial vasculaire A (VEGF-A), avec une diminution de l’isoforme VEGF-A165A et une augmentation de l’isoforme VEGF-A165B. Les chercheurs ont cherché à déterminer si la sénescence des macrophages était responsable de ce changement. Lors d’une première expérience, ils ont observé que les macrophages dans les muscles squelettiques de souris âgées avaient une capacité de prolifération réduite et exprimaient davantage de facteurs inflammatoires et de biomarqueurs de sénescence, comme p16, p21 et SA-β-gal. Ces macrophages sénescents ont été testés sur de jeunes souris ayant subi une blessure à un membre arrière. Les résultats ont montré que les jeunes souris recevant des macrophages sénescents présentaient des résultats similaires à ceux des souris âgées, avec des orteils plus susceptibles de devenir nécrotiques, des muscles plus fibrosés et moins de capillaires. Les cellules endothéliales, qui tapissent les parois des vaisseaux sanguins, ont également montré une capacité de prolifération altérée et un cheminement crucial pour l’angiogenèse impaired. Ces résultats ont été confirmés par des expériences cellulaires montrant que l’exposition à des macrophages sénescents entraînait des diminutions significatives de l’expression et des capacités des protéines liées à l’angiogenèse des cellules endothéliales. Les chercheurs ont ensuite identifié que ces changements étaient directement liés à l’isoforme VEGF-A165B. En knockdounant le gène responsable de la production de ce protéine dans une culture de macrophages, et en introduisant un anticorps contre elle, ils ont pu empêcher les macrophages sénescents de nuire aux capacités des cellules endothéliales. En appliquant ces découvertes sur des souris, ceux qui recevaient des macrophages sénescents modifiés pour ne pas produire VEGF-A165B présentaient des taux d’angiogenèse et de nécrose tissulaire semblables à ceux des souris recevant des macrophages non sénescents. De plus, donner des macrophages non sénescents incapables de produire VEGF-A165B s’est révélé bénéfique. En examinant les humains, les chercheurs ont constaté que les personnes âgées avaient plus de VEGF-A165B et de VEGF-A total que les jeunes, ce qui était corrélé à des vaisseaux sanguins plus petits. Les chercheurs ont noté certaines limitations, comme l’incapacité de stratifier les résultats par sexe, qui influence la PAD, et le fait que des molécules inflammatoires secrétées par les macrophages sénescents pourraient également avoir un impact. Néanmoins, cette recherche met en lumière une cible potentielle pour le traitement, ouvrant des perspectives pour des travaux cliniques futurs impliquant des sénolytiques ciblant les macrophages ou des médicaments anti-VEGF-A165B. Source : https://www.lifespan.io/news/a-senescence-related-target-for-blood-vessel-formation/?utm_source=rss&utm_medium=rss&utm_campaign=a-senescence-related-target-for-blood-vessel-formation

Les petites vésicules extracellulaires : un espoir pour la santé cardiaque des souris âgées

Dans une étude publiée dans la revue *Stem Cell Research & Therapy*, des chercheurs ont découvert que les petites vésicules extracellulaires (sEVs) provenant de souris jeunes peuvent atténuer les dysfonctionnements cardiaques chez les souris âgées. Les vésicules extracellulaires ont été classées selon leur origine, mais la séparation actuelle repose principalement sur leur taille, avec une distinction entre petites (jusqu’à 200 nanomètres) et grandes vésicules. Les chercheurs ont extrait des sEVs de cellules souches dérivées du tissu adipeux de souris âgées de 3 à 6 mois, puis les ont administrés à des souris de 22 mois en deux doses espacées d’une semaine. Après injection, les sEVs ont migré dans le corps des souris, notamment dans le tissu hépatique et musculaire cardiaque. Bien que le traitement n’ait pas modifié la fréquence cardiaque ni la fonction systolique, il a significativement amélioré la fonction diastolique, réduisant l’épaisseur des parois cardiaques et aidant le ventricule gauche à mieux se dilater pour recevoir plus de sang. Les souris traitées avaient des cœurs plus petits, moins de fibrose et une angiogenèse partiellement restaurée. Les marqueurs liés aux dommages oxydatifs et à l’inflammation ont également montré des améliorations, indiquant un potentiel bénéfique des sEVs dans le traitement des maladies liées à l’âge. Bien que ces résultats ne signifient pas une inversion complète du vieillissement cardiaque, ils suggèrent que les sEVs pourraient être une voie prometteuse pour prolonger la durée de vie et traiter des conditions liées à l’âge, notamment l’insuffisance cardiovasculaire, qui est la première cause de mortalité dans le monde. Source : https://www.lifespan.io/news/extracellular-vesicles-restore-some-heart-function-to-mice/?utm_source=rss&utm_medium=rss&utm_campaign=extracellular-vesicles-restore-some-heart-function-to-mice

Impact de la Dysfonction Lymphatique Méningée sur la Santé Cognitive Liée à l’Âge

Le liquide céphalorachidien (LCR) est produit en permanence, circule dans le cerveau et s’évacue dans le corps. Ce flux transporte les déchets métaboliques du cerveau, et les chercheurs commencent à considérer l’altération liée à l’âge de l’évacuation du LCR comme une contribution significative à la perte de fonction cognitive et au développement de conditions neurodégénératives à un âge avancé. Plusieurs voies d’évacuation ont été identifiées, chacune perdant sa fonction avec l’âge. D’abord, le LCR s’évacue par des ouvertures dans la plaque criblée derrière le nez, mais ce chemin se ferme avec l’âge ou des blessures. Des études menées par Leucadia Therapeutics ont souligné l’importance de ce chemin d’évacuation pour le développement de la maladie d’Alzheimer, qui commence dans une partie du cerveau spécifiquement alimentée par ce drainage. Ensuite, le système glymphatique évacue le LCR vers les vaisseaux lymphatiques. Les méninges, la membrane en couches entourant le cerveau et la moelle épinière, sont tapissées de vaisseaux lymphatiques, et le liquide y passe depuis le cerveau. Ce système de vaisseaux souffre d’atrophie et de dysfonctionnement avec l’âge, tout comme le reste du système lymphatique. On peut établir des analogies avec la diminution de la vascularisation pour le flux sanguin dans tout le corps, où la densité des petits vaisseaux capillaires diminue avec l’âge, car les processus de maintenance et de création de nouveaux vaisseaux deviennent dysfonctionnels. Dans un article en accès libre d’aujourd’hui, des chercheurs montrent que cette analogie est pertinente pour provoquer une augmentation de la création de vaisseaux comme moyen de remédier à la perte liée à l’âge des petits vaisseaux. Il a été démontré que la surexpression de VEGF par thérapie génique améliore l’angiogenèse chez les souris âgées, améliorant également leur santé en fin de vie, probablement en partie en limitant la perte de densité capillaire. Pour les vaisseaux lymphatiques, la protéine de signalisation analogue pour promouvoir la génération de nouveaux vaisseaux est le VEGF-C. Des chercheurs montrent que l’administration de VEGF-C par thérapie génique aux méninges peut restaurer l’évacuation du LCR chez les souris âgées et améliorer les mesures de la fonction cérébrale. Ils montrent que les signaux inflammatoires dans le cerveau diminuent une fois l’évacuation améliorée, soutenant l’idée que le problème de l’évacuation réduite est dû à une augmentation des déchets métaboliques dans le cerveau, provoquant une réponse inflammatoire mal adaptée des microglies, cellules immunitaires innées du système nerveux central. Des vaisseaux lymphatiques méningés, localisés dans la dure-mère des méninges, drainent le LCR avec son contenu de déchets dérivés du système nerveux central principalement vers les ganglions lymphatiques cervicaux profonds. Depuis la découverte des vaisseaux lymphatiques méningés, des preuves accumulées provenant de modèles murins et humains ont lié leur dysfonction à diverses conditions neurodégénératives. L’ablation des lymphatiques méningés par des moyens chimiques, génétiques ou chirurgicaux aggrave les résultats comportementaux dans des modèles murins de la maladie d’Alzheimer, des traumatismes crâniens et du stress chronique. Inversement, améliorer la fonction des lymphatiques méningés atténue les déficits cognitifs dans les modèles murins de la maladie d’Alzheimer, du vieillissement et de la craniosynostose. Il est montré que l’altération prolongée des lymphatiques méningés modifie l’équilibre des entrées synaptiques excitatoires et inhibitoires corticales, accompagnée de déficits dans les tâches de mémoire. Ces altérations synaptiques et comportementales induites par la dysfonction lymphatique sont médiées par les microglies, entraînant une expression accrue du gène de l’interleukine 6 (Il6), qui stimule les phénotypes des synapses inhibitrices. La restauration de la fonction lymphatique méningée chez les souris âgées via l’injection intracisternale d’un virus adéno-associé codant le VEGF-C inverse les altérations synaptiques et comportementales associées à l’âge. Nos résultats suggèrent que des lymphatiques méningés dysfonctionnels impactent négativement le circuit cortical par un mécanisme dépendant de l’IL-6 et identifient une cible potentielle pour traiter le déclin cognitif associé à l’âge. Source : https://www.fightaging.org/archives/2025/03/gene-therapy-with-vegf-c-restores-lost-lymphatic-drainage-of-cerebrospinal-fluid-in-aged-mice/

L’Endothélium et son Rôle dans la Santé Cardiovasculaire : Comprendre la Dysfonction Endothéliale et le Vieillissement Vasculaire

L’endothélium est la couche interne des vaisseaux sanguins et joue un rôle crucial dans plusieurs fonctions vitales du système vasculaire, allant de la régulation sélective du passage des molécules à la contraction et dilatation appropriées des vaisseaux sanguins. Les dommages localisés et l’inflammation de l’endothélium constituent une étape précoce dans la formation d’une plaque athéroscléreuse. Cet article se concentre spécifiquement sur l’endothélium de la microvasculature, les plus petits vaisseaux sanguins, où des problèmes similaires se posent et peuvent contribuer, au fil du temps, à la diminution de la densité microvasculaire, à mesure que les mécanismes nécessaires à l’entretien de ces vaisseaux, comme l’angiogenèse, s’altèrent.

La maladie cardiovasculaire (MCV) est la principale cause de morbidité et de mortalité chez les adultes et les personnes âgées, avec une prévalence croissante dans le monde. Une quantité croissante de recherches s’est concentrée sur le stade précoce du déclin vasculaire, à savoir la dysfonction endothéliale (DE), qui, au niveau microvasculaire, peut anticiper le diagnostic de MCV de plusieurs décennies. Cet article de revue vise à fournir un aperçu de la littérature concernant le développement de la DE en tant que caractéristique indissociable du vieillissement du système cardiovasculaire, en mettant en lumière le rôle de l’inflammation dans ce processus.

Le vieillissement vasculaire se compose d’un continuum de toute une vie, qui commence avec la respiration cellulaire et la production inhérente d’espèces réactives de l’oxygène. Ce déséquilibre moléculaire est suivi de changements épigénétiques cellulaires, qui modulent les cellules immunitaires, telles que les sous-types de macrophages et de lymphocytes. Ces mécanismes sont influencés par les habitudes de vie, qui affectent les points chauds de l’inflammation dans l’organisme, comme la graisse viscérale et le microbiote intestinal. Ce processus peut finalement mener à un environnement propice à la perte des fonctions physiologiques des cellules endothéliales. En outre, l’article aborde les changements de mode de vie ciblant la connexion entre l’inflammation liée à l’âge et la dysfonction vasculaire. Traiter la DE microvasculaire représente un enjeu critique pour prévenir ou retarder le vieillissement vasculaire et les maladies associées. Source : https://www.fightaging.org/archives/2025/03/endothelial-dysfunction-of-microvessels-in-the-aging-of-the-vasculature/

Rôle des macrophages et des cellules souches dans la guérison des plaies

Les macrophages, éléments clés du système immunitaire inné, présentent différentes polarités, notamment les macrophages M1 et M2. Les macrophages M1 sont pro-inflammatoires et attaquent les pathogènes, tandis que les macrophages M2 ont un rôle anti-inflammatoire et sont essentiels pour l’entretien des tissus. Bien qu’ils ne soient pas strictement indispensables à la guérison des blessures, leur présence dans l’état M2 accélère ce processus. Ce texte met en avant que la dysfonction de la transition des macrophages de l’état M0 non polarisé vers l’état M2 entraîne des désordres dans le microenvironnement immunitaire des plaies et l’inflammation chronique, ce qui entrave la guérison. Réguler cette polarisation est donc une stratégie efficace pour améliorer la guérison des plaies. De plus, il est mentionné que les cellules souches mésenchymateuses (CSM) peuvent jouer un rôle crucial dans ce processus en livrant des facteurs régulateurs via des vésicules extracellulaires paracrines. Des études antérieures ont établi un lien entre les corps apoptotiques et la régression de l’inflammation ainsi que la polarisation des macrophages, bien que les mécanismes spécifiques de régulation restent encore à élucider. Dans cette étude, les chercheurs ont conçu un échafaudage en polycaprolactone (PCL) chargé de corps apoptotiques dérivés de CSM. Ils ont évalué le phénotype des macrophages et l’inflammation des plaies cutanées à la fois in vivo et in vitro, et analysé l’efficacité de cet échafaudage pour promouvoir la guérison des plaies. Les données suggèrent que l’échafaudage en PCL régule l’expression du gène CCL-1 en ciblant la livraison de mmu-miR-21a-5p par des corps apoptotiques CSM en libération soutenue, ce qui incite les macrophages M0 à se polariser en macrophages M2, régulant ainsi l’inflammation et l’angiogenèse, et favorisant la guérison des plaies. Cette étude propose une stratégie thérapeutique prometteuse et une base expérimentale pour traiter diverses maladies associées à des déséquilibres dans les réponses immunitaires pro-inflammatoires et anti-inflammatoires. Source : https://www.fightaging.org/archives/2025/03/altered-macrophage-behavior-can-accelerate-wound-healing/