Étiquette : âge

Les Mécanismes de l’ARN dans les Maladies Neurodégénératives : De la Biologie à la Thérapie

L’assemblage, le traitement et les activités des molécules d’ARN dans la cellule constituent un sujet vastement complexe, particulièrement dans le contexte des maladies neurodégénératives. Cet article présente un aperçu des domaines d’intérêt pour les chercheurs travaillant sur ces conditions. La transcription des gènes en ARN est la première étape de l’expression génique, et des changements importants dans cette expression surviennent avec l’âge. Un état cellulaire est largement déterminé par les ARN et les protéines produites, influençant ainsi la fonction des tissus. Les maladies neurodégénératives, qui touchent environ 6,9 millions d’Américains en 2024, incluent la maladie d’Alzheimer, la maladie de Parkinson, ainsi que des maladies moins courantes comme la maladie de Huntington et la sclérose latérale amyotrophique. Bien que les symptômes cliniques varient, ces maladies partagent des mécanismes pathologiques sous-jacents, notamment la présence d’inclusions pathologiques et de mutations des protéines liant l’ARN. Des expansions de répétition dans plusieurs maladies, comme la SLA et la DFT, entraînent la production d’ARN contenant des répétitions, qui peuvent induire une neurotoxicité par différents mécanismes. Dans l’ère post-génomique, diverses voies de traitement de l’ARN et de nouveaux types d’ARN, codants et non codants, ont été identifiés dans le contexte des maladies, suggérant une contribution potentielle à la neurodégénérescence. Des stratégies thérapeutiques ciblant l’ARN pour moduler les gènes associés aux maladies ont montré un succès notable. Cet article se concentre sur les mécanismes pathogéniques liés à l’ARN dans les maladies neurodégénératives et sur les approches thérapeutiques ciblant l’ARN qui montrent un grand potentiel. Nous examinons d’abord les différentes voies de traitement de l’ARN et comment ces voies sont dysrégulées dans les maladies neurodégénératives. Ensuite, nous discutons des mécanismes de dysfonctionnement des protéines liant l’ARN, entraînant une régulation incorrecte du traitement de l’ARN. Enfin, nous passons en revue les progrès actuels dans les thérapies ciblant l’ARN. Les différentes voies de traitement de l’ARN sont souvent interconnectées, et la plupart des protéines liant l’ARN jouent des rôles multifonctionnels à travers plusieurs étapes, créant une interaction significative entre elles. Source : https://www.fightaging.org/archives/2025/01/rna-dysregulation-in-neurodegenerative-conditions/

Évaluation de la Fonction Mitochondriale : Déclin et Adaptations Liés à l’Âge

La mesure en biologie est souvent complexe et sujette à débat, en particulier en ce qui concerne la fonction mitochondriale qui est connue pour décliner avec l’âge. Les mitochondries, considérées comme les centrales énergétiques des cellules, produisent l’ATP, une molécule essentielle pour le fonctionnement cellulaire. Historiquement, mesurer la fonction mitochondriale nécessitait l’utilisation de mitochondries vivantes, ce qui posait des défis en termes de coûts, de révisions, de biais et d’erreurs dans la collecte de ces mitochondries à partir d’animaux ou de personnes. Cependant, une méthode robuste pour l’évaluation des échantillons congelés a été récemment développée, permettant aux chercheurs de vérifier le consensus actuel sur le déclin mitochondrial lié à l’âge. Un dispositif appelé respiromètre est utilisé pour mesurer l’activité mitochondriale en détectant la consommation d’oxygène par les organelles. Auparavant, cette méthode ne pouvait être appliquée qu’à des mitochondries fraîchement isolées, rendant difficile l’étude de ces dernières en grand nombre. Grâce à un nouveau protocole d’analyse respiratoire, des chercheurs ont maintenant mesuré une indication de la respiration mitochondriale dans plus de 1 000 échantillons provenant d’une grande cohorte de souris jeunes et âgées, de deux sexes. Ces échantillons incluaient des tissus connus pour leur activité mitochondriale élevée, tels que certaines régions du cerveau, plusieurs muscles squelettiques, le cœur et les reins, ainsi que des tissus métaboliques comme le foie et le pancréas. En raison du processus de congélation et de décongélation, les mitochondries des échantillons n’étaient pas intactes et ne pouvaient donc pas être isolées. Les chercheurs ont mesuré la respiration mitochondriale à trois sites différents de la chaîne de transport d’électrons dans des extraits cellulaires enrichis en membranes mitochondriales. Les protéines de cette chaîne restent relativement stables même lorsque l’intégrité de la membrane mitochondriale est perdue, permettant ainsi de prendre des mesures indiquant la capacité maximale des mitochondries à produire de l’ATP. L’analyse des différences entre les animaux jeunes et âgés a révélé un déclin net de l’activité mitochondriale dans la plupart des tissus avec l’âge, notamment dans le cerveau et les tissus métaboliques. Ces résultats confirment notre compréhension actuelle des besoins énergétiques des différents tissus et de leur déclin au fil du temps. Fait intéressant, chez les animaux plus âgés, la respiration a augmenté dans certains tissus à forte demande énergétique, comme le cœur et les muscles squelettiques, ce qui est potentiellement en contradiction avec l’observation que ces organes fonctionnent moins bien avec l’âge. L’analyse des différences entre les échantillons mâles et femelles a également révélé que l’âge a un effet beaucoup plus important sur l’activité mitochondriale dans tous les tissus que le sexe. Source : https://www.fightaging.org/archives/2025/01/assessing-mitochondrial-decline-with-age-using-frozen-tissue-samples/

Les Mécanismes de Longévité chez les Espèces Maritimes : Une Étude des Baleines et du Cancer

Une meilleure compréhension de la biochimie des espèces grandes et longues-vivantes pourrait, à court terme, mener à des moyens plus efficaces de prévenir le cancer. Les espèces plus grandes et plus vieilles que les humains ont dû évoluer des mécanismes de suppression du cancer plus efficaces. Par exemple, les éléphants possèdent de nombreuses copies du gène suppresseur de tumeurs TP53, tandis que certaines baleines utilisent d’autres mécanismes pour maintenir un faible risque de cancer, assurant ainsi leur longévité et leur succès évolutif. Cependant, il reste incertain de savoir si ces mécanismes cellulaires peuvent être adaptés d’une espèce à une autre. L’évolution de ces techniques pourrait prendre des décennies, voire des siècles, pour parvenir à une ingénierie fiable du génome humain et de la biochimie cellulaire. Les premières observations sur la longévité des baleines provenaient des couches de croissance des bouchons auditifs des baleines à bosse et des baleines bleues, certaines atteignant plus de 100 ans. Des artefacts archéologiques trouvés dans la graisse des baleines à bosse indiquent qu’elles pourraient vivre plus de 130 ans. Des méthodes d’estimation d’âge ont montré que certaines baleines pouvaient dépasser les 150 ans, avec un individu estimé à 211 ans, ce qui contredirait les âges documentés jusqu’à présent. La taille corporelle des baleines, en tant que plus grands animaux vivants, est fortement corrélée à leur longévité. Cependant, les méthodes d’estimation d’âge actuelles présentent des biais, notamment du fait de la chasse industrielle qui a eu lieu jusqu’à récemment et des défis dans la détection des individus très âgés. La plupart des populations de baleines se rétablissent après cette période de chasse, mais la plupart des individus actuellement observés sont nés après 1965. Cela complique la détection d’individus très âgés et pourrait entraîner une sous-estimation de la durée de vie des baleines.