Étiquette : α-synucléine

L’impact de l’agrégation protéique sur le vieillissement cérébral : Étude sur HAPLN2

Un petit nombre de protéines dans le corps et le cerveau sont connues pour devenir mal repliées ou altérées de manière à provoquer la formation d’agrégats protéiques étendus et nuisibles. Les conditions neurodégénératives, en particulier, sont fortement liées aux agrégats de protéines spécifiques, tels que l’amyloïde-β, la tau et l’α-synucléine. Les chercheurs continuent de découvrir de nouvelles protéines capables de produire des agrégats qui contribuent de manière significative aux formes de maladies liées à l’âge. Par exemple, l’agrégation de TDP-43 est une découverte relativement récente qui provoque une forme prédominante de démence. En outre, des recherches montrent que de nombreuses autres protéines, potentiellement des centaines, peuvent produire des agrégats en raison de dysfonctionnements dans les mécanismes de contrôle de la qualité des protéines. Il est donc probable que notre connaissance actuelle soit incomplète concernant les protéines et les agrégats importants dans les maladies liées à l’âge.

L’agrégation des protéines est un marqueur des maladies neurodégénératives et est également observée dans les cerveaux des individus âgés sans ces conditions, ce qui suggère que le vieillissement favorise l’accumulation des agrégats protéiques. Cependant, la compréhension globale des agrégats protéiques dépendants de l’âge impliqués dans le vieillissement cérébral reste floue. Dans cette étude, les chercheurs ont étudié les protéines qui deviennent sarkosyl-insolubles avec l’âge et ont identifié la protéine de liaison à l’hyaluronane et aux protéoglycanes 2 (HAPLN2), une protéine liant l’acide hyaluronique de la matrice extracellulaire aux nœuds de Ranvier, comme une protéine agrégante dépendante de l’âge dans les cerveaux de souris.

Des niveaux élevés d’acide hyaluronique et une fonction microgliale altérée ont réduit l’élimination de HAPLN2, entraînant son accumulation. Les oligomères de HAPLN2 ont induit des réponses inflammatoires microgliales à la fois in vitro et in vivo. En outre, l’agrégation de HAPLN2 associée à l’âge a également été observée dans le cervelet humain. Ces résultats suggèrent que l’agrégation de HAPLN2 résulte du déclin lié à l’âge de l’homéostasie cérébrale et peut aggraver l’environnement cérébral en activant les microglies. Cette étude fournit de nouvelles perspectives sur les mécanismes sous-jacents au vieillissement du cervelet et met en lumière le rôle de HAPLN2 dans les changements associés à l’âge dans le cerveau. Source : https://www.fightaging.org/archives/2025/08/hapln2-forms-aggregates-to-provoke-microglial-inflammation-in-the-aging-brain/

Comprendre les synucléinopathies : Un nouvel espoir thérapeutique pour la maladie de Parkinson

Les synucléinopathies sont des conditions neurodégénératives caractérisées par l’agrégation de l’α-synucléine mal repliée, une protéine qui joue un rôle central dans la pathologie de ces maladies. La maladie de Parkinson est la synucléinopathie la plus connue, mais il est suggéré que l’α-synucléine pourrait également influencer le vieillissement cérébral en général. Ces conditions représentent des versions exacerbées d’un processus de dégradation qui se produit à un certain degré chez chaque personne âgée. Des recherches récentes indiquent que les dommages à l’ADN et les mécanismes de réparation de l’ADN jouent un rôle important dans les synucléinopathies, potentiellement altérés par la présence d’agrégats d’α-synucléine, et contribuant à l’inflammation chronique du tissu cérébral, qui est une caractéristique de ces maladies. La modulation du processus de réparation de l’ADN pourrait avoir des effets bénéfiques, du moins dans des modèles animaux d’agrégation d’α-synucléine.

La maladie de Parkinson (MP) est un trouble neurodégénératif progressif marqué par la dégénérescence des neurones dopaminergiques dans la substantia nigra, entraînant une diminution des niveaux de dopamine dans le striatum et provoquant divers troubles moteurs et non moteurs. Bien que les mécanismes moléculaires à l’origine de la progression de la MP soient encore mal compris, des preuves émergentes suggèrent que l’accumulation de dommages à l’ADN nucléaire, en particulier des cassures doubles brins (CDB), joue un rôle clé dans la neurodégénérescence, favorisant la sénescence et la neuroinflammation. Malgré le rôle pathogène des CDB dans les maladies neurodégénératives, cibler les mécanismes de réparation de l’ADN dans la MP reste une approche thérapeutique largement inexplorée.

L’ATM (Ataxia telangiectasia mutated), une kinase clé dans la réponse aux dommages à l’ADN, joue un rôle crucial dans la neurodégénérescence. Dans cette étude, nous avons évalué le potentiel thérapeutique de l’AZD1390, un inhibiteur d’ATM hautement sélectif et capable de pénétrer dans le cerveau, pour réduire la neuroinflammation et améliorer les résultats comportementaux dans un modèle murin de synucléinopathie. Des souris C57BL/6J de quatre mois ont été injectées unilatéralement avec un vecteur AAV1/2 vide (contrôle) ou AAV1/2 exprimant l’α-synucléine humaine A53T dans la substantia nigra, suivies d’un traitement quotidien avec AZD1390 pendant six semaines.

Chez les souris traitées avec AZD1390, nous avons observé une réduction significative du niveau de la protéine γ-H2AX, un marqueur des CDB, ainsi qu’une régulation à la baisse des marqueurs associés à la sénescence, tels que p53, Cdkn1a et NF-κB, suggérant une amélioration de l’intégrité génomique et une atténuation de la sénescence cellulaire, indiquant ainsi une stabilité génomique améliorée et un vieillissement cellulaire réduit. L’AZD1390 a également considérablement atténué les réponses neuroinflammatoires, comme en témoigne la diminution de l’expression de cytokines et chémokines pro-inflammatoires clés. Fait intéressant, les souris traitées avec AZD1390 ont montré des améliorations significatives de l’asymétrie comportementale et des déficits moteurs, indiquant une récupération fonctionnelle. Dans l’ensemble, ces résultats suggèrent que cibler la réponse aux dommages à l’ADN par l’inhibition de l’ATM réduit le stress génotoxique, supprime la neuroinflammation et améliore les résultats comportementaux dans un modèle murin de synucléinopathie. Ces découvertes soulignent le potentiel thérapeutique de la modulation de la réponse aux dommages à l’ADN dans la MP et les synucléinopathies associées. Source : https://www.fightaging.org/archives/2025/08/regulating-the-dna-damage-response-as-a-treatment-for-synucleinopathies/

Impact de l’α-synucléine sur la barrière hémato-encéphalique et son implication dans la maladie de Parkinson

Les chercheurs ont découvert comment la protéine α-synucléine (α-syn), impliquée dans la maladie de Parkinson et la démence à corps de Lewy, entraîne une inflammation et une perturbation des axones dans le cerveau. Le cerveau est protégé par une barrière hémato-encéphalique (BHE) qui empêche de nombreuses substances dans le sang d’endommager les neurones. Les dommages à cette barrière sont directement liés aux maladies neurodégénératives, mais peu de recherches ont été menées sur la relation entre la BHE et les α-synucleinopathies. Les études ont principalement porté sur les effets directs de l’α-syn sur les cellules. Les chercheurs ont examiné les formes monomériques et agrégées d’α-syn, en introduisant ces protéines dans des cellules endothéliales de la BHE en laboratoire. Ils ont observé que les fibrilles agrégées (PFF) entraînaient une perturbation de la protéine VE-cadhérine, essentielle à l’intégrité de la BHE, augmentant ainsi la perméabilité de la BHE à des substances normalement exclues. L’analyse de l’expression génique a révélé que le groupe PFF avait une régulation significativement accrue de gènes liés à l’inflammation, notamment TNF-α. L’inhibition de TNF-α a montré une réduction de la perméabilité de la BHE. Les chercheurs ont ensuite utilisé des souris modifiées pour accumuler l’α-syn et ont constaté une fuite importante de la BHE, avec des marqueurs d’inflammation et de dommages aux axones. Dans une autre expérience, des souris ont reçu des injections de PFF et de l’etanercept, un inhibiteur de TNF-α, ce qui a réduit l’infiltration d’IgG, montrant un potentiel traitement pour atténuer les effets de la maladie. Bien qu’aucune preuve ne prouve que cela fonctionne chez l’homme, la perturbation de la BHE et l’inflammation semblent jouer un rôle crucial dans la pathologie de Parkinson, justifiant des essais cliniques pour valider l’efficacité de tels traitements. Source : https://www.lifespan.io/news/how-blood-brain-barrier-leaks-make-parkinsons-worse/?utm_source=rss&utm_medium=rss&utm_campaign=how-blood-brain-barrier-leaks-make-parkinsons-worse

L’irisine : Un espoir pour lutter contre la maladie de Parkinson grâce à l’exercice

La maladie de Parkinson est une affection neurodégénérative caractérisée par la présence de corps de Lewy et la perte de neurones dopaminergiques. Des recherches récentes ont établi un lien entre la dégénérescence neuronale et l’inflammation neurogène, notamment l’augmentation de l’activité des microglies et des composés inflammatoires dans le cerveau. L’accumulation de l’α-synucléine dans l’hippocampe joue un rôle clé dans cette inflammation, et réduire cette neuroinflammation pourrait ralentir le déclin des symptômes associés à la maladie de Parkinson. Des études antérieures ont montré que l’exercice physique diminue naturellement l’inflammation, y compris dans le cerveau, et peut être bénéfique pour atténuer les symptômes de Parkinson. En effet, des expériences ont démontré que le plasma dérivé de rongeurs ayant fait de l’exercice et injecté à des rongeurs souffrant de symptômes de Parkinson avait des effets positifs. Cependant, ces études n’avaient pas totalement élucidé les mécanismes biochimiques impliqués, ce qui a conduit les chercheurs à se concentrer sur l’irisine, un composé lié à l’exercice qui semble avoir des effets bénéfiques sur l’inflammation neurogène. Dans leurs expériences, les chercheurs ont utilisé des souris traitées avec MPTP, un composé induisant des symptômes similaires à ceux de Parkinson, et ont observé une augmentation de la pathologie de Parkinson et une diminution de la neurogenèse. Cependant, l’exercice a partiellement atténué ces effets négatifs. Après 10 semaines d’exercice sur tapis roulant, la neurogenèse était largement restaurée, et les performances des souris sur le test de la piscine de Morris s’étaient améliorées. Fait intéressant, l’exercice a également diminué le niveau d’α-synucléine dans le cerveau. De plus, l’exercice a réduit la mort cellulaire par apoptose dans l’hippocampe, et des marqueurs clés d’inflammation ont également été modifiés. Les chercheurs ont ensuite étudié l’irisine dans des cultures cellulaires, montrant qu’elle pouvait réduire l’expression de NLRP3, une protéine inflammatoire augmentée dans la maladie de Parkinson. Des expériences sur des rats ayant couru sur un tapis roulant ont montré que le sérum de ces animaux réduisait les marqueurs inflammatoires lorsqu’il était exposé à l’α-synucléine, grâce à l’augmentation d’irisine. L’administration directe d’irisine a également reproduit de nombreux avantages de l’exercice, y compris la réduction des marqueurs d’inflammation et d’apoptose, ainsi qu’une amélioration de la neurogenèse et des performances. Ces découvertes sont encourageantes pour les personnes atteintes de la maladie de Parkinson. Étant donné les effets délétères de cette maladie sur la fonction motrice, elle empêche souvent l’exercice comme traitement. Ainsi, un mimétique de l’exercice, comme l’irisine semble l’être, pourrait constituer une partie clé des traitements futurs. Cependant, ces résultats doivent encore être validés par des essais cliniques sur des êtres humains pour confirmer l’efficacité de l’irisine dans le traitement de la maladie de Parkinson. Source : https://www.lifespan.io/news/how-exercise-may-fight-parkinsons-disease/?utm_source=rss&utm_medium=rss&utm_campaign=how-exercise-may-fight-parkinsons-disease