Auteur/autrice : Guillaume

Les Enhanced Games : Une Révolution Controversée dans le Sport et l’Amélioration Humaine

Les Enhanced Games, un événement sportif controversé, se déroulera pour la première fois à Las Vegas pendant le week-end de Memorial Day en 2026. Contrairement aux compétitions sportives traditionnelles qui interdisent l’utilisation de substances améliorant la performance, les Enhanced Games encouragent explicitement les athlètes à recourir à des médicaments et technologies d’amélioration de la performance, sous supervision médicale. L’événement se concentrera sur trois disciplines : la natation, l’athlétisme et l’haltérophilie, avec des compétitions telles que le 50 m et le 100 m en nage libre et en papillon, ainsi que le sprint de 100 m et les épreuves d’haltérophilie. Les vainqueurs recevront un prix de 250 000 dollars, avec des primes d’un million de dollars pour les records du monde. Le nageur grec Kristian Gkolomeev a déjà établi un nouveau record du monde au 50 m nage libre, remportant ainsi une prime. Les organisateurs des Enhanced Games, incluant Aron D’Souza et le financier Christian Angermayer, affirment que cet événement pourrait catalyser des avancées scientifiques dans le domaine de l’amélioration humaine, en promouvant l’utilisation de médicaments améliorant la performance, de thérapies géniques et de technologies émergentes. Ils soutiennent que, historiquement, le sport a été un moteur d’innovation dans la physiologie, la nutrition et la technologie médicale, et que lever le tabou sur l’amélioration pourrait débloquer de nouvelles thérapies bénéfiques pour la longévité. Cependant, l’événement fait face à de vives critiques, notamment de la part de professionnels de la santé et d’agences antidopage, qui soulignent les risques pour la santé, les préoccupations éthiques et les conséquences sociétales pouvant découler de la normalisation de l’usage de drogues dans le sport. La question de savoir si les Enhanced Games pourront finalement bénéficier à la santé humaine et à la longévité demeure un sujet de débat intense. Source : https://longevity.technology/news/enhanced-games-to-make-las-vegas-debut-in-2026/

Stately Bio : Redéfinir la Mesure des Cellules Vivantes grâce à l’Imagerie et à l’Apprentissage Machine

Le lancement récent de Stately Bio met en lumière un défi majeur de la médecine régénérative : l’incapacité à surveiller les cellules vivantes en temps réel sans les détruire. Après trois ans en mode furtif, la startup de Palo Alto a émergé ce mois-ci avec 12 millions de dollars de financement initial et une plateforme qui combine l’apprentissage machine (ML) et l’imagerie avancée pour relever ce défi de longue date. La plateforme de Stately permet une imagerie à haute résolution et sans étiquettes des cellules vivantes, permettant de suivre l’identité, la qualité et le comportement des cellules en continu. Cela permet aux chercheurs d’observer la croissance, la maturation et la réaction des cellules aux interventions sans recourir à un marquage génétique ou chimique, ce qui pourrait accélérer le cycle de développement des thérapies cellulaires. Le fondateur, Frank Li, ancien responsable de l’apprentissage machine chez Calico, a été inspiré par son expérience dans le domaine de la biologie du vieillissement et le potentiel transformateur du ML dans la recherche biomédicale, en particulier en matière d’imagerie. En effet, les scientifiques travaillant sur les thérapies cellulaires ont traditionnellement dû faire un compromis entre tuer les cellules pour analyser leur fonctionnement interne ou se contenter de méthodes non destructives moins informatives. Stately Bio vise à éliminer ce compromis. Les résultats préliminaires de la société sont prometteurs, avec la production de cellules améliorées déjà explorées pour des applications allant du dépistage de la toxicité des médicaments à la modélisation des maladies et à l’utilisation thérapeutique potentielle. Li souligne que la biologie est dynamique et que comprendre comment les cellules réagissent aux signaux au fil du temps est crucial, en particulier dans la différenciation des cellules souches. Stately se concentre actuellement sur la différenciation des cellules souches en types cellulaires matures et fonctionnels, mais Li suggère que la même technologie pourrait être utilisée pour la reprogrammation cellulaire partielle. Ce projet est ambitieux, cherchant à redéfinir ce qui est possible dans l’étude de la biologie, en remettant en question la tradition selon laquelle l’imagerie a joué un rôle secondaire par rapport aux techniques moléculaires plus invasives. La société valide ses modèles par des études internes rigoureuses et des collaborations externes, montrant une forte concordance entre ses quantifications et les marqueurs spécifiques évalués par des méthodes d’imagerie traditionnelles. En fin de compte, Stately Bio ne se contente pas d’améliorer la façon dont la biologie est mesurée, mais redéfinit également ce qui est possible dans le domaine de la recherche cellulaire. Source : https://longevity.technology/news/unlocking-biologys-temporal-dimension/

La Longevity Science Foundation soutient la recherche sur le rajeunissement du cerveau

La Longevity Science Foundation (LSF) est une organisation à but non lucratif engagée dans le financement de la recherche visant à prolonger la durée de vie humaine en bonne santé. Récemment, la LSF a annoncé une subvention accordée au Centre pour le Vieillissement en Santé de l’Université de Copenhague, qui fait partie du Département de Médecine Cellulaire et Moléculaire. Cette recherche, dirigée par le Dr Morten Scheibye-Knudsen, un expert reconnu mondialement dans le domaine du vieillissement et de la neurodégénérescence, se concentre sur le projet intitulé « Rajeunir le Cerveau Vieillissant ». Le financement de la LSF permettra d’appuyer un élément clé de ce projet sur une période de trois ans, débutant en 2025. L’objectif principal de cette étude est de renverser le vieillissement cérébral en développant des composés capables d’éliminer sélectivement les astrocytes sénescents, des cellules cérébrales endommagées qui s’accumulent avec l’âge, tout en préservant les neurones sains. Ces cellules sénescentes sont considérées comme des contributeurs au déclin cognitif et aux maladies neurodégénératives. En combinant le dépistage assisté par intelligence artificielle avec des tests de composés à haut débit, l’équipe de recherche identifiera des molécules prometteuses, affinera leur spécificité et leur pharmacocinétique, et validera leur potentiel thérapeutique à travers des tests rigoureux in vitro et in vivo. Le soutien de la LSF est essentiel pour permettre ce travail novateur, qui pourrait mener à la création de nouvelles classes de traitements pour les affections cérébrales liées à l’âge. Ce projet souligne également l’engagement de la Fondation à financer une science translationnelle qui comble le fossé entre la découverte en laboratoire et l’application médicale dans le monde réel. Joshua C. Herring, Président et CEO de la LSF, a exprimé sa satisfaction de soutenir le Dr Scheibye-Knudsen et son équipe, affirmant que ce projet reflète la conviction que la recherche ciblée et innovante peut mener à des interventions significatives dans le vieillissement et la neurodégénérescence. La LSF s’engage à faciliter des découvertes qui prolongent la vie et améliorent sa qualité. Ce partenariat représente un pas vers la réalisation de la mission plus large de la Fondation, qui est de démocratiser l’accès à la recherche sur la longévité de pointe et de garantir que les sciences les plus prometteuses reçoivent les ressources nécessaires pour prospérer. Pour ceux qui souhaitent soutenir la recherche révolutionnaire menée par le laboratoire Scheibye-Knudsen, faire un don à la LSF ou soutenir d’autres initiatives de recherche, ils peuvent contacter le COO Lev Dvornik ou le CEO Joshua Herring. Toutes les donations sont déductibles d’impôts dans les limites de l’IRS et financent directement la recherche, dollar pour dollar. La Longevity Science Foundation se consacre à l’avancement de la longévité humaine en finançant la recherche et le développement de technologies médicales pour prolonger la durée de vie humaine en bonne santé. La mission à long terme de la Fondation est de prévenir toutes les maladies chroniques et liées à l’âge, et d’aider à rendre les soins axés sur la longévité accessibles à tous, quel que soit leur parcours, en faisant sortir la science de pointe sur le vieillissement du laboratoire vers le grand public. Le Centre pour le Vieillissement en Santé de l’Université de Copenhague est une initiative de recherche interdisciplinaire qui regroupe des experts en médecine, neurosciences et biologie moléculaire pour explorer comment nous vieillissons et comment améliorer la santé tout au long de la vie. Le centre est reconnu internationalement pour ses recherches pionnières sur les aspects biologiques, cognitifs et sociétaux du vieillissement. Source : https://www.lifespan.io/news/grant-award-announcement-rejuvenating-the-aging-brain-study/?utm_source=rss&utm_medium=rss&utm_campaign=grant-award-announcement-rejuvenating-the-aging-brain-study

L’impact de l’environnement sur le vieillissement des souris : une étude révélatrice

Dans une étude publiée dans Aging Cell, des chercheurs ont découvert que l’exposition de souris de laboratoire de la souche Black 6 à un environnement plus naturel accélère le vieillissement de leurs foies plutôt que de le ralentir. Les animaux de laboratoire vivent dans des conditions contrôlées qui leur permettent souvent de vivre plus longtemps que leurs homologues sauvages, en raison de l’absence de prédateurs et de compétition. Cependant, cette étude remet en question l’idée que des conditions plus naturelles sont toujours meilleures pour la longévité. En effet, des souris sauvages capturées au Pays de Galles ont montré des signes de vieillissement plus rapide par rapport à des souris de laboratoire, ce qui a incité les chercheurs à étudier les effets d’un environnement différent sur les mêmes souris Black 6. Ils ont exposé des souris à un enclos en plein champ dès l’âge de deux semaines, en les protégeant des prédateurs, mais pas des autres éléments environnementaux. Les résultats ont montré que les souris de terrain présentaient des changements épigénétiques faisant état d’un vieillissement accéléré. Environ 96 % des sites hyperméthylés ont vieilli presque deux fois plus rapidement dans l’environnement naturel, tandis que 66 % des sites hypométhylés ont montré un vieillissement moyen de 28 % plus rapide. Les chercheurs ont également observé que le stress environnemental augmentait le risque de dommages à l’ADN, surtout chez les souris introduites dans le champ à l’âge adulte. Ces résultats suggèrent que les souris de laboratoire, bien que vivant dans un environnement apparemment moins stressant, subissent moins de vieillissement que celles exposées à des conditions plus naturelles. Cette étude souligne l’importance de l’environnement sur le vieillissement des tissus, en particulier le foie, et ouvre la voie à des recherches futures sur d’autres tissus et sur l’impact des toxines environnementales. Source : https://www.lifespan.io/news/common-laboratory-mice-age-faster-in-a-natural-environment/?utm_source=rss&utm_medium=rss&utm_campaign=common-laboratory-mice-age-faster-in-a-natural-environment

Une nouvelle approche pour traiter les protéines amyloïdes mal repliées dans la maladie d’Alzheimer

Les chercheurs explorent une approche innovante pour piéger les protéines amyloïdes-β mal repliées avant qu’elles ne s’agrègent et n’interfèrent avec la biochimie du cerveau. En empêchant l’agrégation de ces protéines, celles-ci peuvent se décomposer ou être éliminées sans causer de dommages. Ce développement est particulièrement pertinent car il existe un besoin pressant de traitements alternatifs moins coûteux et plus sûrs aux immunothérapies anti-amyloïdes actuelles. Les amyloïdes-β jouent un rôle crucial dans l’évolution vers la maladie d’Alzheimer, rendant d’autant plus important de traiter cette condition à un stade précoce et de manière préventive dans une large population. Les coûts et les effets secondaires des thérapies actuelles ne sont pas adaptés à cette utilisation. La plupart des maladies neurodégénératives sont marquées par l’accumulation de protéines mal repliées dans le cerveau, entraînant une perte progressive de neurones. Pour résoudre ce problème, les chercheurs se sont tournés vers une classe de peptides amphiphiles contenant des chaînes modifiées d’acides aminés, déjà utilisés dans des médicaments bien connus. Le tréhalose, un sucre naturel présent dans les plantes et les insectes, est reconnu pour sa capacité à stabiliser les macromolécules biologiques, y compris les protéines. Dans les expériences, lorsqu’ils sont ajoutés à l’eau, les peptides amphiphiles s’assemblent en nanofibres recouvertes de tréhalose. Étonnamment, le tréhalose a eu un effet déstabilisant sur les nanofibres, ce qui a en fait eu un effet bénéfique en rendant ces assemblages moléculaires très réactifs. Les nanofibres se sont alors liées aux protéines amyloïdes-β, piégeant ainsi ces protéines dans des structures fibreuses stables. Cela signifie que les protéines amyloïdes-β, qui auraient formé des fibres amyloïdes nuisibles, sont désormais piégées et ne peuvent plus pénétrer les neurones pour les détruire. Ce mécanisme novateur pourrait représenter une solution efficace pour freiner la progression des maladies neurodégénératives comme la maladie d’Alzheimer à un stade précoce, en opposition aux thérapies actuelles qui reposent sur la production d’anticorps contre les fibres amyloïdes bien formées. Source : https://www.fightaging.org/archives/2025/05/therapeutic-peptide-amphiphiles-prevent-misfolded-amyloid-%ce%b2-from-aggregating/

Impact du Microbiome Intestinal sur le Vieillissement Cardiovasculaire

La composition des populations microbiennes constituant le microbiome intestinal évolue avec l’âge. Les espèces inflammatoires et celles produisant des métabolites nocifs augmentent en nombre, au détriment des espèces générant des métabolites bénéfiques. Cela explique pourquoi les approches visant à rajeunir le microbiome intestinal, en le rétablissant dans un équilibre plus jeune, entraînent des gains significatifs en santé et en espérance de vie dans les études animales menées jusqu’à présent. Les chercheurs se concentrent ici sur un aspect particulier du vieillissement du microbiome intestinal, identifiant un métabolite microbien spécifique qui nuit à l’endothélium vasculaire en provoquant une sénescence cellulaire. L’endothélium, qui est la couche interne des vaisseaux sanguins, subit des dommages et une dysfonction qui sont des causes contributives précoces de divers dysfonctionnements vasculaires, allant du développement de lésions athéroscléreuses à la fuite de la barrière hémato-encéphalique.

La sénescence des cellules endothéliales est un moteur clé du vieillissement cardiovasculaire, mais peu de choses sont connues sur les mécanismes par lesquels elle est induite in vivo. Cette étude révèle que le métabolite bactérien intestinal, l’acide phénylacétique (PAA), et son sous-produit, le phénylacétylglutamine (PAGln), sont élevés chez les humains et les souris âgées. Des analyses métagénomiques montrent une augmentation liée à l’âge des voies microbiennes productrices de PAA, positivement associées à la bactérie Clostridium sp. ASF356 (Clos).

Les chercheurs démontrent que la colonisation de jeunes souris par Clos augmente les niveaux de PAA dans le sang et induit une sénescence endothéliale ainsi qu’une incapacité angiogénique. Mécaniquement, il a été découvert que le PAA déclenche la sénescence par la production de H2O2 mitochondrial, exacerbant le phénotype sécréteur associé à la sénescence. En revanche, il a été observé que les niveaux de l’acétate fécal réduisent avec l’âge, compromettant sa fonction en tant que sénomorphique dépendant de Sirt1, régulant la sécrétion pro-inflammatoire et l’homéostasie redox. Ces résultats définissent le PAA comme un médiateur de la communication entre le microbiome intestinal et les vaisseaux sanguins dans le vieillissement, et identifient l’acétate de sodium comme une potentielle sénothérapie basée sur le microbiome pour promouvoir un vieillissement en santé. Source : https://www.fightaging.org/archives/2025/05/phenylacetic-acid-produced-by-gut-microbes-harms-the-vascular-endothelium/

Rôle des lymphocytes T gamma delta dans l’élimination des cellules sénescentes et leurs implications pour le vieillissement

Les cellules sénescentes s’accumulent avec l’âge, en raison de la diminution de la capacité du système immunitaire à les détruire. Ces cellules, bien que bénéfiques dans certains contextes comme la guérison des blessures, perturbent la structure et la fonction des tissus grâce à leurs sécrétions pro-inflammatoires. Leur accumulation est liée à des résultats cliniques défavorables. Différentes approches thérapeutiques sont en cours de développement pour éliminer sélectivement ces cellules, mais une meilleure compréhension de la manière dont le système immunitaire les élimine naturellement pourrait ouvrir des avenues vers des thérapies plus efficaces. L’idéal serait de renforcer la capacité du système immunitaire à éliminer les cellules sénescentes indésirables tout en permettant leur existence à court terme lorsqu’elles sont bénéfiques. Des recherches récentes mettent en lumière le rôle des lymphocytes T gamma delta (γδ T) dans la clearance des cellules sénescentes. Ces cellules immunitaires réagissent à la présence de cellules sénescentes et, dans certains contextes, peuvent devenir pro-inflammatoires, notamment dans le tissu adipeux viscéral. L’excès de graisse viscérale accélère la production de cellules sénescentes, contribuant ainsi à l’inflammation. Il est suggéré que la génération continue de cellules sénescentes dans le tissu adipeux viscéral pourrait rendre la réponse des γδ T maladaptive. Des études montrent que les γδ T peuvent éliminer efficacement les cellules sénescentes tout en épargnant les cellules saines, ce qui pourrait être une stratégie prometteuse pour le développement d’immunothérapies ciblant le vieillissement biologique. Les γδ T s’étendent en réponse à des stimuli pathologiques et colocalisent avec les cellules sénescentes dans des modèles de fibrose pulmonaire. En transférant des γδ T dans des modèles murins de fibrose pulmonaire, on observe une réduction des cellules sénescentes et une amélioration des résultats, suggérant que ces cellules ou les modalités qui activent leur réponse de surveillance pourraient représenter une approche puissante pour éliminer les cellules sénescentes et leurs contributions au vieillissement et aux maladies. Source : https://www.fightaging.org/archives/2025/05/%ce%b3%ce%b4-t-cells-are-involved-in-the-clearance-of-senescent-cells/

Traçage épigénétique des lignées : Comprendre la complexité hématopoïétique et le déclin lié à l’âge

L’intérêt croissant pour les racines cellulaires du vieillissement a conduit à une étude récente publiée dans Nature qui place l’hématopoïèse clonale, souvent perçue à travers le prisme du risque oncogénique, dans un récit biologique plus large. Des chercheurs du Centre for Genomic Regulation et de l’IRB Barcelona ont développé EPI-clone, une méthode sans transgène pour le traçage de lignées clonales utilisant des épimutations somatiques comme codes-barres naturels. En association avec la plateforme Tapestri de Mission Bio, l’équipe a analysé plus de 230 000 cellules uniques à travers les systèmes hématopoïétiques murins et humains, révélant comment les clones de cellules souches fonctionnels émergent, persistent ou s’estompent avec l’âge. Cette technique permet de capturer à la fois l’identité clonale et l’état de différenciation cellulaire à partir du même échantillon de cellule unique, contournant ainsi les limites de l’étiquetage génétique ou de la dépendance à des conducteurs mutationnels connus.

Contrairement aux approches traditionnelles qui impliquent des transplantations ou des modèles génétiquement modifiés, EPI-clone fonctionne directement sur des échantillons non perturbés, offrant une vue particulièrement fidèle du comportement clonal in vivo. Chez les souris, les chercheurs ont constaté que le déclin de la diversité clonale avec l’âge n’est pas simplement une question d’attrition ; un petit nombre de clones de cellules souches, souvent fonctionnellement inertes, deviennent dominants, tandis que de nombreux clones jeunes persistent discrètement. En parallèle, des données humaines ont montré que les mutations d’hématopoïèse clonale connues et des clones auparavant invisibles présentent des biais de lignée similaires, suggérant que les définitions actuelles pourraient être trop étroites. La capacité de détecter la sortie de lignée et la dérive épigénétique en parallèle pourrait avoir des implications au-delà de l’hématopoïèse, notamment si des modèles similaires existent dans d’autres compartiments de cellules souches somatiques.

Pour la gérontologie, ce travail aborde l’une des préoccupations centrales du domaine : comment la réserve fonctionnelle s’érode avec le temps et à quel point nous pourrions être en mesure de la détecter tôt. Le fait que les marques épigénétiques puissent fournir à la fois l’historique de la lignée et l’état cellulaire sans manipulation invasive ouvre des possibilités pour le suivi longitudinal du vieillissement des tissus, identifiant peut-être même des changements précliniques avant que le déclin fonctionnel ne devienne apparent. Avec sa compatibilité inter-espèces et sa scalabilité via des plateformes commerciales, EPI-clone pourrait trouver sa place dans des études plus larges sur la dérive clonale, le potentiel régénératif et la résilience des tissus à un âge avancé.

Cette étude démontre avec élégance que l’épigénome – longtemps apprécié pour son rôle dans la régulation génique – peut également servir de code-barres naturel durable de la lignée cellulaire. En permettant un traçage clonale à haut débit, sans transgène et à résolution de cellule unique, EPI-clone offre une nouvelle perspective sur la manière dont l’hématopoïèse – et peut-être d’autres systèmes dirigés par des cellules souches – vieillissent. La découverte que des clones étendus peuvent manquer de mutations conductrices connues, tout en exhibant des comportements fonctionnellement distincts, rappelle que la dynamique clonale liée à l’âge est plus complexe que le simple récit mutationnel. D’un point de vue translationnel, la scalabilité de cette approche sur une plateforme commerciale est prometteuse, et son applicabilité aux échantillons humains sans manipulation génétique la rapproche de la recherche clinique.

Quoique cette méthode puisse un jour aider à stratifier les trajectoires de vieillissement ou à informer des interventions précoces reste à voir, mais les bases posées ici sont robustes, convaincantes et s’alignent bien avec l’évolution du domaine vers des approches proactives et précises pour une longévité saine. Les auteurs révisent notre compréhension du vieillissement hématopoïétique – non pas comme un déclin uniforme, mais comme un processus sélectif et dynamique façonné par le comportement clonal. Utilisant des épimutations somatiques naturelles comme codes-barres stables, EPI-clone permet un traçage de lignée à haut débit et sans transgène in vivo. Les chercheurs ont découvert qu’un petit nombre de clones de cellules souches hématopoïétiques s’élargissent avec l’âge et prennent le relais d’importantes parties de la production sanguine, tandis que la majorité des cellules souches restent petites, mais fonctionnellement plus similaires aux cellules souches jeunes. La persistance de ces clones jeunes, précédemment obscurcis dans des analyses globales, met en lumière un potentiel régénératif inexploité même dans la moelle osseuse âgée.

Velten voit ce modèle non seulement comme descriptif, mais comme thérapeutiquement actionnable. Les résultats soutiennent l’idée qu’en éliminant les grands clones étendus, on pourrait créer de l’espace dans le microenvironnement de la moelle osseuse pour que les petits clones prennent le relais de la production sanguine. Une étude récente chez des souris utilisant un anticorps thérapeutique fournit des preuves préliminaires pour cette stratégie ; maintenant, avec EPI-clone, les clones étendus chez les humains peuvent être identifiés et profilés à une résolution moléculaire. Cela ouvre la voie à des interventions ciblées qui pourraient restaurer un paysage hématopoïétique plus jeune sans avoir besoin de transplantation ou de thérapie génique. Au-delà de son potentiel diagnostique, Velten pense que la perte de diversité clonale contribue directement au vieillissement fonctionnel. La perte de complexité clonale est un excellent biomarqueur de l’âge biologique du système de formation sanguine, mais elle est plus que cela : les expansions clonales contribuent fonctionnellement au vieillissement. Ces clones dominants produisent souvent plus de cellules myéloïdes et moins de cellules lymphoïdes, déformant le système immunitaire vers l’inflammation et réduisant la capacité adaptative. Ce déséquilibre, observé à la fois chez les souris et les humains, suggère que la sélection clonale liée à l’âge pourrait façonner activement le déclin immunitaire systémique.

Il est important de noter que la plupart des clones étendus identifiés avec EPI-clone manquent de mutations conductrices canoniques. La découverte que la plupart des expansions clonales n’ont pas de mutations conductrices connues souligne que ces expansions clonales apparaissent probablement inévitables, probablement en raison de décennies de compétition entre les cellules souches sanguines au cours de la vie humaine. Cette observation déplace la perception de l’hématopoïèse clonale liée à l’âge loin du risque oncogénique pur, la positionnant plutôt comme une propriété émergente de la dynamique des cellules souches à long terme. EPI-clone capte cette évolution au niveau épigénétique – avant que des changements génétiques apparents ou des symptômes cliniques n’apparaissent. Velten est optimiste quant à la possibilité de traduire EPI-clone au-delà des milieux de recherche. Avec des coûts par échantillon déjà réduits de 100 000 € à 5 000 €, et une baisse projetée à 50 € dans trois ans, il voit un réel potentiel d’intégration dans le suivi longitudinal de la santé. Une fois que nous atteindrons 50 € par échantillon, il pense que cela deviendra l’un des outils permettant d’étudier comment les facteurs liés au mode de vie et à l’environnement façonnent le sang humain et de surveiller le vieillissement chez les individus à haut risque. Bien que la méthode ait été développée pour l’hématopoïèse, l’équipe l’a appliquée avec succès aux cellules endothéliales, et Velten anticipe que des modèles clonaux similaires seront trouvés dans d’autres tissus somatiques maintenus par des cellules souches. Cela pourrait faire d’EPI-clone non seulement une fenêtre sur la biologie sanguine, mais un outil polyvalent pour suivre le vieillissement lui-même. Source : https://longevity.technology/news/clonal-drift-in-aging-blood-tracked-with-natural-barcodes/

L’Acquisition de 23andMe par Regeneron : Un Changement de Pouvoir Génétique

L’acquisition de 256 millions de dollars de 23andMe par Regeneron marque un moment potentiellement transformateur dans le paysage de la découverte de médicaments basée sur les données génétiques. Regeneron, déjà un leader dans l’utilisation des données génétiques pour le développement de médicaments, contrôlera désormais l’une des plus grandes biobanques au monde, avec des données génétiques et phénotypiques provenant de plus de 15 millions d’individus. Cette acquisition permettra à Regeneron d’accélérer la découverte de cibles, d’améliorer les taux de succès clinique et d’améliorer la santé des populations grâce à une découverte de médicaments plus large. L’intégration des informations sur la santé des consommateurs de 23andMe avec l’infrastructure de génomique clinique de Regeneron peut également ouvrir de nouvelles sources de revenus, y compris des partenariats et des collaborations de recherche. L’acquisition est considérée comme un coup de maître en médecine de précision, offrant à Regeneron un avantage concurrentiel auto-renforçant. Regeneron dispose maintenant d’un ensemble de données cinq fois plus grand que celui de la UK Biobank, ce qui lui permet de poursuivre le développement de médicaments à une échelle et une vitesse inégalées par ses concurrents. Cependant, la base de données de 23andMe n’est pas seulement vaste, elle est aussi riche grâce à des questionnaires longitudinaux détaillés et à la participation à la recherche consentie. Les données comprennent des informations démographiques, des antécédents de santé, ainsi que des rapports personnalisés sur les traits et l’ascendance. Malgré certains risques liés à l’auto-déclaration, cette profondeur de données permet des analyses multidimensionnelles qui lient les variantes génétiques aux résultats de santé réels. Toutefois, des préoccupations subsistent concernant la vie privée des consommateurs et la sécurité des données, exacerbées par une violation de données en 2023 qui a conduit à la faillite de 23andMe. Regeneron a promis de respecter les politiques de confidentialité existantes et de se soumettre à un contrôle par un ombudsman nommé par le tribunal. L’intention de Regeneron de maintenir les services de test génétique de 23andMe en tant que filiale entièrement détenue ouvre des possibilités d’engagement des consommateurs et d’enrichissement des capacités de recherche, mais cela nécessite également de surmonter les préoccupations persistantes en matière de confidentialité et de garantir la conformité réglementaire. En somme, l’acquisition de Regeneron pourrait représenter une avancée majeure dans l’évolution de la médecine de précision, mais son impact réel dépendra de la manière dont la société gère les défis éthiques, réglementaires et opérationnels associés à la gestion de la plus grande base de données génétiques de consommateurs au monde. Source : https://longevity.technology/news/regenerons-acquisition-of-23andme-a-genomic-power-shift/

Juvenescence et M42 : Un partenariat stratégique pour le développement de médicaments contre le vieillissement à Abu Dhabi

Juvenescence, une entreprise de biotechnologie axée sur la longévité, a récemment annoncé avoir levé 76 millions de dollars lors de la première clôture de son tour de financement de série B-1, visant à soutenir le développement de son pipeline clinique basé sur l’intelligence artificielle axé sur les maladies liées à l’âge. Ce tour de financement a été dirigé par M42, une entreprise de soins de santé technologique basée à Abu Dhabi, qui a également participé à ce financement en tant qu’investisseur existant. La clôture complète du tour est prévue pour le troisième trimestre de cette année, avec un objectif de levée de fonds total supérieur à 150 millions de dollars. Grâce à ce financement, Juvenescence pourra faire avancer son portefeuille de traitements à des stades plus avancés de développement clinique et générer des données clés à partir d’essais en cours. La société se concentre sur les mécanismes biologiques du vieillissement pour traiter et prévenir les maladies associées, en développant des programmes dans des domaines tels que la cognition, le cardio-métabolisme, l’immunité et la réparation cellulaire, avec un pipeline comprenant plusieurs candidats en phase clinique et proche de la phase clinique.

Lors de la Semaine de la santé mondiale d’Abu Dhabi le mois dernier, Juvenescence a également annoncé un partenariat stratégique avec M42 pour développer ensemble des thérapies basées sur l’IA ciblant le vieillissement et d’autres maladies menaçantes pour la vie. Ce partenariat comprend la création d’un nouveau pôle de développement de médicaments basé sur l’IA à Abu Dhabi, combinant l’infrastructure et l’expertise de M42 en matière de données cliniques, de génomique et de prestation de soins de santé avec les capacités de découverte de médicaments de Juvenescence. Le PDG de Juvenescence, le Dr Richard Marshall, a souligné que ce partenariat stratégique accélérerait le développement clinique du pipeline de Juvenescence, tout en contribuant à établir un pôle de sciences de la vie de premier plan à Abu Dhabi. Un comité de pilotage composé des cadres supérieurs des deux organisations supervisera l’exécution de ce nouveau pôle de développement, qui vise à découvrir et développer de nouveaux traitements tout en favorisant des collaborations avec des institutions académiques et de recherche aux Émirats et à l’international. M42, qui résulte de la fusion de G42 Healthcare et Mubadala Health, devient rapidement un acteur majeur des soins de santé mondiaux, employant plus de 20 000 personnes et gérant plus de 480 installations dans 26 pays. Leur partenariat avec Juvenescence est décrit comme une étape cruciale vers la redéfinition des soins de santé grâce à la découverte de médicaments basée sur l’IA et à la biotechnologie, visant à avancer dans la lutte contre les maladies liées à l’âge tout en créant un écosystème mondial qui favorise la prévention, la précision et le progrès, permettant la livraison de thérapies transformantes d’Abu Dhabi vers le monde. Source : https://longevity.technology/news/juvenescence-lands-76m-led-by-abu-dhabi-healthcare-giant-m42/