Dommages à l’ADN et vieillissement : Mécanismes et perspectives thérapeutiques

Les dommages à l’ADN sont impliqués dans le vieillissement dégénératif, bien que le débat persiste sur leur contribution précise à la dysfonction tissulaire généralisée en plus du risque accru de cancer. La plupart des dommages mutatifs à l’ADN sont rapidement réparés, tandis que la plupart des mutations durables se produisent dans des régions inutilisées du génome, dans des cellules somatiques ayant peu de divisions restantes. Bien que la plupart des mutations puissent donc causer peu de dommages, une voie possible vers des dommages plus étendus résulte des mutations se produisant dans les cellules souches, qui peuvent se propager largement dans les tissus pour former des motifs de mutations chevauchants connus sous le nom de mosaïcisme somatique. Il existe des preuves initiales que cela contribue aux conditions liées à l’âge et à la perte de fonction. Une possibilité plus radicale est que les efforts répétés pour réparer des formes plus sévères de dommages à l’ADN, qu’ils soient réussis ou non, épuisent les facteurs nécessaires pour maintenir un contrôle jeune sur la structure du génome et l’expression des gènes, ce qui donne lieu aux changements caractéristiques observés dans les cellules des tissus âgés. La question de ce qui peut être fait au sujet des dommages stochastiques à l’ADN survenant à différents endroits dans différentes cellules reste complexe. Réparer ces dommages semble être un défi, un projet pour un avenir plus lointain. Ralentir l’accumulation de dommages non réparés semble plus réalisable, en grande partie une question d’identification des protéines cruciales dans la machinerie de réparation de l’ADN et en en fournissant davantage. Cependant, si même les efforts de réparation réussis entraînent inévitablement des changements dans la structure du génome et le comportement cellulaire, cela peut ne pas être si efficace pour ralentir le vieillissement. Réduire l’incidence du cancer, oui, car cela est absolument déterminé par le fardeau des dommages mutationnels non réparés, mais peut-être pas aussi bénéfique pour le reste du vieillissement. Les dommages à l’ADN constituent une menace sérieuse pour la viabilité cellulaire et sont impliqués comme la principale cause du vieillissement normal. Ainsi, cibler les dommages à l’ADN de manière thérapeutique pourrait contrer la dysfonction cellulaire liée à l’âge et les maladies, telles que les conditions neurodégénératives et le cancer. Identifier de nouveaux mécanismes de réparation de l’ADN révèle donc de nouvelles interventions thérapeutiques pour plusieurs maladies humaines. Dans les neurones, la réparation des cassures double-brin de l’ADN n’est possible que par la jonction non homologue, qui est beaucoup plus sujette aux erreurs que d’autres processus de réparation de l’ADN. Cependant, il n’existe aucune intervention thérapeutique pour améliorer la réparation de l’ADN dans les maladies affectant les neurones. La jonction non homologue est également une cible utile pour les thérapies anticancéreuses basées sur la réparation de l’ADN visant à tuer sélectivement les cellules tumorales. L’isomérase de disulfure de protéines (PDI) joue un rôle dans de nombreuses maladies, mais ses rôles dans ces conditions restent mal définis. PDI présente à la fois une activité chaperonne et une activité oxydoréductase dépendante du redox, et bien qu’elle soit principalement localisée dans le réticulum endoplasmique, elle a également été détectée dans d’autres emplacements cellulaires. Ce texte décrit un rôle nouveau pour PDI dans la réparation des cassures double-brin de l’ADN suite à au moins deux types de dommages à l’ADN. PDI fonctionne dans la jonction non homologue, et après des dommages à l’ADN, elle se déplace vers le noyau, où elle co-localise avec des protéines critiques de réparation des cassures double-brin à des foyers de dommages à l’ADN. Un mutant inactif du redox de PDI, dépourvu de ses deux résidus de cystéine du site actif, n’était pas protecteur. Ainsi, l’activité redox de PDI médie la réparation de l’ADN, mettant en évidence ces cystéines comme cibles potentielles pour des interventions thérapeutiques. Le potentiel thérapeutique de PDI a également été confirmé par son activité protectrice dans un organisme entier contre les dommages à l’ADN induits in vivo dans des zebrafish. Par conséquent, exploiter la fonction redox de PDI pourrait constituer une cible thérapeutique novatrice contre les dommages à l’ADN double-brin pertinents pour plusieurs maladies humaines. Source : https://www.fightaging.org/archives/2025/06/increased-protein-disulphide-isomerase-slows-accumulation-of-dna-damage/

Les chiens comme modèles du vieillissement : Une étude sur les marqueurs de sénescence et les thérapies par cellules souches

Une nouvelle étude publiée dans Communications Biology explore les marqueurs du vieillissement chez les chiens et investigue les thérapies par cellules souches, ce qui soulève des questions sur leur pertinence et leur rigueur en matière de recherche translational. Les chercheurs s’appuient sur des modèles canins pour examiner la complexité du vieillissement humain. En combinant la génomique, la protéomique et la métabolomique, l’étude a établi un atlas du vieillissement chez 19 chiens de quatre races, utilisant le séquençage d’ARN à cellule unique et la modélisation des cellules souches pour tracer les signatures systémiques et cellulaires du vieillissement. Les résultats révèlent neuf marqueurs de sénescence des cellules T CD8+ et deux métabolites – le Penitrem A et l’UDP-N-acétylglucosamine – comme des indicateurs robustes du vieillissement. Ces découvertes soulignent l’importance des chiens en tant que modèle pertinent pour le vieillissement humain, notamment en ce qui concerne le déclin du système immunitaire et la recherche de biomarqueurs cliniquement significatifs.

Les chercheurs ont identifié neuf types de cellules sanguines canines qui changent avec l’âge, notamment plusieurs populations de cellules T et myéloïdes, dont quatre présentent des modèles de vieillissement similaires aux données humaines. L’analyse métabolomique a révélé 51 métabolites associés à l’âge, avec une augmentation de l’UDP-N-acétylglucosamine et du Penitrem A. Les cellules souches mésenchymateuses ont été utilisées comme intervention sur douze chiens, certaines modifiées pour surexprimer NMNAT1, une enzyme clé pour la biosynthèse de NAD+. Bien que le traitement ait amélioré des marqueurs biochimiques liés à la fonction hépatique et rénale, des doutes subsistent sur l’ampleur des conclusions, certains experts appelant à la prudence quant à l’interprétation des résultats.

Malgré ces critiques, l’idée que les chiens pourraient servir de modèles translational dans la science du vieillissement est soutenue par certains chercheurs, qui soulignent leur potentiel pour informer sur les mécanismes de vieillissement humain et les interventions susceptibles d’améliorer la longévité. Les chiens, âgés de sept à dix fois plus vite que les humains, permettent d’évaluer les interventions sur des périodes beaucoup plus courtes. Toutefois, pour tirer le meilleur parti des données qu’ils fournissent, il est essentiel de faire preuve de rigueur analytique et de ne pas confondre les signaux précoces avec des résultats définitifs. Source : https://longevity.technology/news/dogs-data-and-the-drive-to-decode-aging/

Lancement du Prix Longitude : Utiliser l’IA pour lutter contre la SLA

Le Prix Longitude sur la SLA (sclérose latérale amyotrophique) a été lancé avec un objectif ambitieux : récompenser les équipes utilisant l’intelligence artificielle (IA) pour identifier des cibles thérapeutiques pour cette maladie neurodégénérative, qui est la plus commune des maladies des neurones moteurs. Avec un financement de 7,5 millions de livres sterling, ce prix vise à encourager des approches innovantes dans un domaine où les progrès thérapeutiques sont urgents, surtout compte tenu de la rapidité de la progression de la SLA et du manque de traitements efficaces.

La SLA représente un défi majeur en matière de recherche médicale, car elle affecte les cellules nerveuses responsables du mouvement musculaire, entraînant une perte progressive des capacités motrices. Les patients ont généralement une espérance de vie de deux à cinq ans après le diagnostic, et bien que certains traitements existent, aucun ne parvient à stopper ou inverser la maladie.

Le Prix Longitude sur la SLA, soutenu par la Motor Neurone Disease Association et Challenge Works, va attribuer vingt prix de découverte de 100 000 livres en 2026, suivis d’une récompense finale d’un million de livres en 2031. L’initiative cherche à catalyser des efforts multidisciplinaires en réunissant un vaste ensemble de données sur la SLA, provenant de divers projets de recherche, afin de favoriser une analyse par IA qui pourrait révéler de nouvelles cibles médicamenteuses.

Le modèle de ce prix ne se limite pas à un financement significatif ; il représente également un changement fondamental dans l’approche de la recherche sur les maladies qui ont longtemps résisté aux traitements. En intégrant la neuroscience, l’apprentissage machine et la validation en laboratoire, le Prix Longitude encourage les équipes à démontrer non seulement leur compétence en IA, mais aussi leur capacité à traduire les découvertes en applications biologiques concrètes.

Cette initiative s’inscrit dans une tendance plus large vers une innovation dérisquée et collaborative dans le secteur biopharmaceutique. Le soutien public est également notable, avec une majorité de personnes prêtes à partager leurs données biologiques pour aider à la recherche sur la SLA. Les organisateurs espèrent que cette dynamique mettra en lumière l’urgente nécessité de traiter cette maladie dans le contexte plus vaste des défis liés au vieillissement de la population.

Si le Prix Longitude sur la SLA réussit, il pourrait servir de modèle pour d’autres initiatives visant à aborder des maladies neurodégénératives similaires, où des données abondantes existent mais où des percées thérapeutiques restent à réaliser. Le succès de cette approche pourrait transformer la recherche sur de nombreuses conditions liées à l’âge, en utilisant l’IA non seulement pour accélérer la découverte mais aussi pour remodeler complètement la façon dont cette recherche est menée. Source : https://longevity.technology/news/prize-aims-to-drive-ai-into-the-heart-of-als-drug-discovery/

OutSee : Une Révolution dans la Génomique Prédictive pour le Développement Médical

OutSee, une entreprise biotechnologique britannique basée à Cambridge, a reçu un financement de 1,8 million de livres sterling pour développer sa plateforme de génomique prédictive et son pipeline thérapeutique. L’entreprise se concentre sur le développement de médicaments ciblant les troubles du système nerveux central et les troubles métaboliques, où la complexité de la biologie des maladies limite souvent l’utilité des approches traditionnelles. La technologie phare d’OutSee, appelée Nomaly, est une technologie propriétaire basée sur l’intelligence artificielle qui prédit la maladie et le phénotype à partir d’un seul génome. Cette méthode vise à passer d’une interrogation rétrospective des données à une exploration génomique proactive, permettant ainsi de découvrir des moteurs fondamentaux de maladie qui restent invisibles pour d’autres outils. Contrairement à la recherche d’associations génétiques connues, Nomaly utilise une méthode ‘sans hypothèse’ pour déduire des informations à partir de la biologie sous-jacente codée dans le génome. Cela permet une forme de génomique prédictive qui identifie les mécanismes moléculaires et cellulaires responsables du développement des maladies, offrant une compréhension plus profonde et plus précoce de la pathogénie que les méthodes conventionnelles. Le fondateur et PDG d’OutSee, le Dr Julian Gough, a déclaré que la technologie de l’entreprise apporte une biologie prédictive dans un domaine dominé par des méthodes fondamentalement basées sur la corrélation et l’association. Il a mentionné que cette approche pourrait débloquer de nouvelles perspectives sur les maladies, avec un potentiel prometteur pour des maladies comme Alzheimer et Parkinson, grâce à l’identification de nouvelles cibles médicamenteuses biologiquement pertinentes. OutSee a des projets de développement financés par des subventions de médecine de précision d’Innovate UK, avec un accent sur la démence. Gough prévoit plus d’activités dans les maladies chroniques et liées à l’âge au cours des deux prochaines années. L’entreprise cherche à collaborer avec des fondations et des investisseurs pour accroître l’activité de découverte et de validation des cibles dans ces domaines, tant en interne que pour des partenaires à la recherche de nouvelles cibles pouvant faire avancer ces programmes vers le développement thérapeutique. Plutôt que de dépendre de données provenant de grandes cohortes de patients, OutSee affirme que sa technologie fonctionne efficacement même avec de petits ensembles de données, ce qui aide à découvrir des cibles biologiquement significatives qui pourraient être négligées par des techniques basées sur l’association. Cela inclut l’identification d’interactions multi-variantes et de jeux génétiques complexes, permettant une stratification plus raffinée des patients et l’avancement des efforts de médecine de précision. Le tour de financement a été dirigé par Ahren Innovation Capital, avec la participation de Kadmos Capital, Empirical Ventures et Panacea Ventures. Ces fonds seront utilisés pour améliorer les capacités de base d’OutSee, élargir ses programmes internes et soutenir la sensibilisation auprès des entreprises pharmaceutiques et biotechnologiques intéressées à exploiter Nomaly pour l’identification de nouvelles cibles. Selon le Dr Joanna Green d’Ahren, l’approche génomique d’OutSee va bien au-delà des technologies existantes, permettant aux développeurs thérapeutiques de passer leurs données avec une précision sans précédent. Nomaly a un grand potentiel pour débloquer une compréhension plus profonde des données génomiques, découvrir de nouvelles cibles thérapeutiques et stimuler le développement de traitements de nouvelle génération pour l’ensemble du spectre des maladies humaines. Source : https://longevity.technology/news/outsee-lands-funding-to-harness-predictive-genomics-in-drug-discovery/

Une mutation rare confère une protection contre la maladie d’Alzheimer

Les scientifiques ont récemment découvert qu’une mutation rare protège contre la maladie d’Alzheimer en atténuant une voie inflammatoire centrale. Cette découverte a été confirmée à l’aide d’une petite molécule. Pendant près de 40 ans, des chercheurs ont étudié une vaste famille d’environ 6 000 personnes à Medellín, en Colombie, dont de nombreux membres portent la mutation génétique PSEN1 E280A (Paisa), qui entraîne généralement un développement précoce de la maladie d’Alzheimer. Ces porteurs présentent souvent des signes de troubles cognitifs dans la quarantaine, développent une démence dans la cinquantaine et décèdent dans la soixantaine. Cependant, Aliria Rosa Piedrahita de Villegas, une femme de cette famille, a défié ces attentes ; malgré le port de la mutation Paisa, elle est restée cognitivement saine jusqu’à ses 70 ans et est morte d’un cancer à 77 ans. Ses scanners cérébraux post-mortem ont révélé la présence de plaques amyloïdes, mais peu d’enchevêtrements neurofibrillaires de protéine tau, surtout dans les régions cérébrales liées à la mémoire. En plus de la mutation nuisible Paisa, Aliria avait deux copies d’une mutation rare dans le gène APOE3, connue sous le nom de mutation R136S ou mutation Christchurch. Des études ont montré que cette mutation avait des effets protecteurs contre la maladie d’Alzheimer, notamment en réduisant l’accumulation de tau et en préservant les niveaux de synapses. Les chercheurs ont utilisé le modèle CRISPR/Cas9 pour remplacer le gène APOE des souris par le gène humain APOE3 normal ou le gène APOE3 avec la mutation Christchurch. Les souris portant la mutation ont montré une diminution significative de l’accumulation de tau dans l’hippocampe et une protection contre la perte de synapses. De plus, cette mutation a empêché la perte de myéline, essentielle à la fonction neuronale, et a préservé les ondes cérébrales thêta et gamma, cruciales pour le traitement de l’information. Les chercheurs ont également mené des expériences in vitro sur des microglies, les cellules immunitaires du cerveau, montrant que celles portant la mutation R136S étaient plus efficaces dans l’élimination du tau. Une découverte centrale était que la mutation R136S supprimait la voie de signalisation cGAS-STING-interféron dans les microglies, qui est un régulateur central de l’inflammation, souvent activée par la pathologie tau et qui contribue à la progression de la maladie d’Alzheimer. En traitant des souris tauopathiques avec un inhibiteur de cGAS, les chercheurs ont observé des bénéfices similaires à ceux de la mutation, réduisant la propagation de tau et protégeant contre la perte synaptique. Bien que la mutation Christchurch ne puisse pas être introduite chez les humains, cibler la même voie qu’elle module pourrait offrir une nouvelle stratégie thérapeutique pour la maladie d’Alzheimer et d’autres conditions neurodégénératives. Source : https://www.lifespan.io/news/targeting-an-inflammatory-pathway-fights-alzheimers/?utm_source=rss&utm_medium=rss&utm_campaign=targeting-an-inflammatory-pathway-fights-alzheimers

L’Exposome : Influence des Facteurs Environnementaux sur le Vieillissement et la Santé

L’exposome est un concept qui englobe l’ensemble des facteurs environnementaux auxquels un individu est exposé tout au long de sa vie, et qui influencent les processus biologiques ainsi que la santé globale de la personne. Parmi les aspects bien étudiés de l’exposome figurent la pollution de l’air par les particules, l’exposition aux métaux lourds ainsi qu’une vaste gamme de choix alimentaires et de modes de vie. Ce document de revue propose un aperçu général des réflexions actuelles sur le rôle des composants de l’exposome dans l’apparition et la progression des conditions liées à l’âge. Les composantes de l’exposome incluent notamment les agents polluants de l’air et de l’eau, les choix alimentaires, ainsi que les risques professionnels. Ces facteurs environnementaux, s’ils sont prolongés, peuvent entraîner un vieillissement cellulaire accéléré, une perturbation du métabolisme ou une augmentation des maladies chroniques telles que les maladies cardiovasculaires, le diabète ou le cancer. Les toxines environnementales et les facteurs de mode de vie sont également associés au développement ultérieur de maladies neurodégénératives telles qu’Alzheimer et Parkinson. Cette revue décrit comment l’exposome influence le vieillissement, en mettant l’accent sur les mécanismes sous-jacents, et propose des stratégies potentielles pour contrer les effets néfastes de l’exposome sur la santé. Tout d’abord, elle fournit une structure de base concernant l’exposition environnementale et son impact sur le vieillissement. Ensuite, elle examine le rôle du stress oxydatif, de l’inflammation et des modifications épigénétiques. Par la suite, elle aborde les avancées dans la recherche sur l’exposome et son lien avec les maladies neurodégénératives. Enfin, elle propose des directions futures et des stratégies préventives visant à réduire le risque lié à l’exposome et à favoriser un vieillissement sain. Source : https://www.fightaging.org/archives/2025/06/reviewing-the-contribution-of-the-exposome-to-age-related-disease/

L’Identité Positionnelle et la Régénération des Membres : Rôle de l’Acide Rétinoïque

Le domaine de la biologie comparée s’intéresse principalement à la compréhension des capacités de régénération des espèces telles que les salamandres et les poissons-zèbres, afin de reproduire ces capacités chez les mammifères. Bien que des indices suggèrent que les mammifères possèdent encore les mécanismes moléculaires nécessaires à la régénération des organes, leur inactivité dans la plupart des cas soulève des questions. La régénération des tissus nécessite une chorégraphie cellulaire complexe, illustrée par la régénération des membres chez les salamandres, où les cellules mésenchymateuses, y compris les fibroblastes dermiques et les cellules périsquelettiques, se dédifférencient en un état embryonnaire et migrent vers le bout du membre amputé pour former un blastème. Ce blastème contient des informations positionnelles qui coordonnent la réestablishment du patron proximodistal (PD) dans le membre en régénération. Les cellules du blastème formant l’autopode se distinguent de celles formant le stylopode. Il est proposé que des valeurs continues d’informations positionnelles existent le long de l’axe PD, les seuils de ces valeurs spécifiant les segments du membre. Ces segments sont établis génétiquement par des combinaisons de gènes homeobox, dont les gènes Hox et Meis, chacun ayant un profil épigénétique unique. Cependant, une explication mécaniste sur la manière dont ces valeurs d’informations positionnelles sont établies et interprétées différemment par les segments du membre est manquante. Cette étude démontre que la dégradation de l’acide rétinoïque (RA) via CYP26B1 est essentielle pour déterminer les niveaux de signalisation de RA au sein des blastèmes. L’inhibition de CYP26B1 reprogramme moléculairement les blastèmes distaux en une identité plus proximale, imitant les effets de l’administration d’excès de RA. Le gène Shox, sensible au RA, est exprimé différemment entre les membres amputés proximaux et distaux. L’ablation de Shox entraîne des membres raccourcis avec des éléments squelettiques proximaux qui échouent à initier l’ossification endochondrale. Ces résultats suggèrent que l’identité positionnelle PD est déterminée par la dégradation du RA et par les gènes réactifs au RA qui régulent la formation des éléments squelettiques PD lors de la régénération des membres. Source : https://www.fightaging.org/archives/2025/06/incremental-progress-in-understanding-axolotl-limb-regeneration/

Thérapies régénératives pour le cœur vieillissant : Compréhension et innovation

La création de thérapies régénératives efficaces pour le cœur vieillissant est un domaine de recherche et de développement actif. Les thérapies cellulaires basées sur l’administration de cardiomyocytes se sont révélées difficiles, car la plupart des cellules transplantées ne survivent pas. Récemment, les chercheurs ont conçu des patchs tissulaires constitués de cardiomyocytes et de structures de matrice extracellulaire artificielle, permettant à un plus grand nombre de cellules transplantées de survivre et de générer des tissus sains. La matrice extracellulaire naturelle du cœur change avec l’âge, mais son vieillissement est moins étudié que celui des cellules. Ce vieillissement est important car il contribue à la disruption de la fonction tissulaire liée à l’âge. La recherche actuelle s’intéresse à mieux comprendre ce vieillissement et à identifier des signaux pertinents pour construire de meilleurs patchs tissulaires. Les fibroblastes cardiaques, responsables du remodelage du tissu cardiaque, peuvent être activés par des stimuli externes, ce qui entraîne leur différenciation en myofibroblastes. Ce processus est essentiel pour la déposition de la matrice extracellulaire, mais peut également conduire à la fibrose. Dans les tissus vieillissants, les changements dans la matrice extracellulaire peuvent activer les fibroblastes cardiaques de manière anormale, entraînant un remodelage tissulaire inapproprié. Les myofibroblastes sont plus abondants dans les cœurs âgés et induisent des modifications de la géométrie tissulaire. Bien que des systèmes matériels in vitro aient identifié des propriétés individuelles de la matrice extracellulaire, il reste un défi d’ajuster ces propriétés de manière indépendante. La recherche vise à développer un échafaudage basé sur la matrice extracellulaire native, permettant de régler indépendamment les propriétés mécaniques tout en imitant l’environnement cardiaque in vivo. Ce travail met en avant un échafaudage hybride de matrice extracellulaire décellularisée et d’hydrogel synthétique, capable de conférer deux propriétés matricielles distinctes aux cellules cultivées, permettant ainsi d’identifier les mécanismes d’activation des fibroblastes cardiaques liés à l’âge et au remaniement de la matrice. Les résultats montrent que la présentation de ligands d’une matrice extracellulaire jeune peut contrebalancer les signaux de rigidité profibrotique d’une matrice âgée, contribuant ainsi à maintenir la quiescence des fibroblastes cardiaques. Ces échafaudages modulables pourraient permettre de découvrir des cibles extracellulaires spécifiques pour prévenir les dysfonctionnements liés au vieillissement et promouvoir le rajeunissement. Source : https://www.fightaging.org/archives/2025/06/understanding-the-aging-of-the-heart-extracellular-matrix-as-a-basis-for-better-tissue-engineering/

Infinity Bio : Une avancée majeure dans le profilage des anticorps pour comprendre l’immunité et le vieillissement

Infinity Bio, une biotechnologie américaine fondée en 2023 et basée à Baltimore, a récemment clôturé un tour de financement de série A de 8 millions de dollars pour élargir sa plateforme d’intelligence du système immunitaire. La société développe une technologie de profilage d’anticorps de haute qualité et évolutive, visant à améliorer la compréhension de l’inflammation, de l’immunité et des mécanismes des maladies, y compris celles liées à l’âge. La technologie propriétaire de l’entreprise, appelée MIPSA (Molecular Indexing of Proteins by Self Assembly), permet une analyse approfondie du ‘réactome’ des anticorps, c’est-à-dire l’éventail complet des anticorps présents dans le système immunitaire d’un individu. Développée au sein de l’Université Johns Hopkins, MIPSA intègre des principes de génomique, de protéomique et de bioinformatique pour fournir des aperçus à haute résolution sur les réponses immunitaires. Grâce à cette technologie, les chercheurs peuvent examiner comment les anticorps interagissent avec des milliers de cibles antigéniques simultanément, le tout dans un seul essai. Cela soutient des applications variées, y compris la découverte de biomarqueurs, le développement thérapeutique, la conception de vaccins et l’optimisation des anticorps monoclonaux, avec un potentiel significatif dans les applications biotechnologiques liées à la longévité. Ben Larman, le fondateur scientifique d’Infinity Bio et professeur associé de pathologie à Johns Hopkins, souligne qu’il est de plus en plus reconnu que des processus inflammatoires anormaux contribuent au vieillissement accéléré des organes et à la réduction de la durée de vie en bonne santé. Pour mieux comprendre la nature de ces réponses immunitaires, il est essentiel d’identifier leurs cibles moléculaires, telles que les infections chroniques, les irritants environnementaux, les composants du microbiome et les réactions auto-immunes. Infinity Bio affirme que sa technologie fournit la clarté nécessaire en testant les anticorps contre de vastes panneaux de cibles d’anticorps pour établir le réactome d’anticorps de chaque individu. Larman s’attend à ce que des avancées majeures dans le domaine se produisent à mesure que l’adoption et l’intérêt pour le réactome d’anticorps augmentent parmi les immunologistes, les épidémiologistes et les entreprises biopharmaceutiques. Avec le financement récemment obtenu, Infinity Bio prévoit d’élargir ses opérations commerciales et de faire évoluer sa technologie pour répondre à la demande croissante des institutions académiques, des agences gouvernementales et du secteur biopharmaceutique. Leur installation de 9 000 pieds carrés est déjà capable de traiter des milliers d’échantillons par semaine, soutenant à la fois la recherche et le développement clinique. Parallèlement à ce financement, Infinity Bio a renforcé sa position sur le marché en acquérant les actifs de la société de profilage immunitaire Serimmune. Cette acquisition devrait alimenter le lancement de nouveaux services dans la seconde moitié de 2025. Le tour de financement a été mené par Illumina Ventures, le bras d’investissement du géant de la génomique Illumina, qui a récemment démontré son engagement envers le multi-omics. Dr Malek Faham d’Illumina Ventures a salué la capacité scientifique d’Infinity Bio à fournir des aperçus sur le système immunitaire grâce à sa plateforme de profilage du réactome d’anticorps. Ce financement vise à accélérer l’innovation de la plateforme, à stimuler la croissance commerciale et à favoriser le développement de nouvelles offres de services. Source : https://longevity.technology/news/infinity-bio-lands-funding-to-harness-the-reactome-against-disease/

Sola : Une avancée dans le traitement des artères coronaires calcifiées chez les patients âgés

Le traitement des artères coronaires calcifiées représente l’un des défis les plus techniques de la médecine cardiovasculaire, particulièrement à une époque où les maladies cardiovasculaires sont la principale cause de mortalité dans le monde. Avec le vieillissement de la population et la complexité croissante des comorbidités, il devient essentiel de développer des dispositifs capables de naviguer en toute sécurité dans une anatomie fragile. FastWave Medical, une entreprise basée à Minneapolis, a récemment annoncé la réussite de ses premières procédures chez l’homme avec son dispositif Sola, un système laser conçu pour les applications coronaires. Ce dispositif fait suite à la plateforme IVL périphérique existante de FastWave, Artero, et témoigne de l’engagement de la société envers des technologies modulaires et évolutives adaptées à différents territoires vasculaires.

Sola déploie des impulsions laser contrôlées à 360 degrés via un cathéter à ballon résistant à la rupture, une conception visant à améliorer la délivrabilité et la transmission d’énergie tout en simplifiant le déroulement des procédures. Bien que ces cas de faisabilité précoce ne soient que le début du parcours clinique de Sola, ils offrent un aperçu de son rôle potentiel dans la gestion de l’un des contributeurs les plus persistants au vieillissement cardiovasculaire. Le système a été conçu pour naviguer dans les vaisseaux tortueux et calcifiés rencontrés chez les patients âgés, permettant un traitement avec plus de contrôle et moins de traumatisme.

Sola fonctionne à une fréquence d’impulsions de 5 Hz, ce qui est cinq fois plus rapide que les plateformes IVL traditionnelles, réduisant ainsi le temps durant lequel le cœur est soumis à un stress. Cette conception évite le besoin d’inflation à haute pression ou d’athérectomie, utilisant plutôt des ondes de pression soniques générées par l’énergie laser pour modifier les plaques calcifiées. Cette méthode est plus ciblée et moins traumatique, en particulier dans les anatomies complexes ou fragiles, améliorant ainsi la sécurité des procédures et contribuant à de meilleurs résultats à long terme.

Nelson, le cofondateur de FastWave, envisage que Sola puisse avoir des applications plus larges, en particulier dans le cadre d’une approche préventive en soins cardiovasculaires. En offrant une thérapie ciblée avec un traumatisme minimal des vaisseaux, Sola représente une option plus sûre pour intervenir plus tôt dans le processus de la maladie. Cela s’harmonise avec une approche axée sur la longévité de la santé, en stabilisant les plaques avant qu’elles ne causent des obstructions significatives ou des événements cardiaques.

Les avantages d’une procédure plus courte et moins traumatisante se traduisent également par un retour plus rapide à une activité normale, préservant ainsi l’indépendance, la mobilité et la fonction cardiovasculaire à long terme des patients âgés. En somme, Sola pourrait transformer la gestion des maladies coronariennes calcifiées, en permettant des procédures moins invasives, en réduisant les complications immédiates et en améliorant les résultats cardiovasculaires à long terme. Nelson envisage un avenir où des systèmes comme Sola pourraient être intégrés dans des stratégies d’intervention précoce, jouant ainsi un rôle croissant dans les soins cardiovasculaires proactifs. Source : https://longevity.technology/news/coronary-laser-takes-aim-at-calcified-arteries-in-aging-patients/